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ABSTRACT

This study examines procedures for selecting tests for a battery as one means of

improving the classification efficiency and potential economic benefit of the Army's c-,.rrent

operational test battery. Five test selection methods, each representing competing measures

of selection and classification efficiency, are compared under varying conditions expected

to affect classification efficiency.

The research approach adopted involves a simulation of the Army selection and

classification process based on the coverage of Army jobs provided by the Project A data.

Comparisons of the classification efficiency produced under each test selection
methodology are reported in terms of the average mean predicted performance (MPP)

produced by each simulation.

The results confirm the predictions of Zeidner and Johnson (1989b) that the use of

a classification efficient test selection procedure can improve the utility of the Army
assignment process. The use of a method which maximizes potential classification

efficiency results in as much as twenty percent gain in MPP over use of a method which
maximizes predictive validity when used for a five-test battery. In addition, doubling the

number of jobs used in the simulation results in a performance gain of ten percent. This

gain is an underestimate of what we would predict from increasing the number of

classification efficient predictor composites or aptitude areas (AAs) corresponding to

effectively reconstructed job families. Capitalization on disparate means and variances
across jobs (hierarchical classification efficiency) provides no greater benefit for

classification efficiency than is possible from a pure allocation efficient assignment

strategy. This suggests that significant gains in productivity can be obtained simply by

modifying the Army's current AA composites to capitalize on allocation efficiency, i.e., use

the full set of least squares estimates of performance standardized to have equal means and

variances.

Utility estimates of observed increases in MPP give an indication of the economic

benefits of implementing classification efficient test selection methods. Gains of the

v



magnitude found in this study could be worth well over 100 million dollars annually to the

Army. Further gains may be expected when used in the context of different sets of

predictors and jobs.
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SUMMARY

In earlier reports, major validation studies and meta- analytic studies were reviewed
(Zeidner, 1987); technical issues in the development of decision theoretic utility models

were traced (Zeidner and Johnson, 1989a); means of imdproving classification efficiency

and its measurement wece detailed (Johnson and Zeidner, 1990); and productivity gains
attributable to varying job entry standards and assignment procedures using the Armed

Services Vocational Aptitude Battery (ASVAB) were estimated (Zeidner and Johnson,
1989b). The present study examines alternative psychometric test selection indices as a

means of improving the classification efficiency of the ASVAB.

Over the last two decades, the tests and test composites of the ASVAB have been
selected to maximize predictive validity with little attention given to improving classification
efficiency of the total set of tests in a multi-job, optimal assignment situation. Additionally,

the number of tests per composite has been kept small and weights restricted to unity to
simplify operational use of the composites. This emphasis on predictive validity and
operational simplicity, required in a pre-computer age, can be shown to be fundamentally
erroneous and outdated with respect to both empirical results and psychometric theory.

Although the amount of predictive validity provided by each test composite of a

battery is a very poor indicator cf rl.,bification efficiency, predictive validity has been used
by some investigators as the basis of making potentially damaging recommendations

concerning the ASVAB. For example, McLaughlin, Rossmeissl, Brandt, Wise, and Wing

(1984) recommended a revised set of nine AAs even though the revised AAs showed an 18
percent reduction in differential validity; the investigators believed that such a reduction was
an acceptable price to pay for a moderate increase in predictive validity. Hunter, Crosson

and Friedman (1985) and Schmidt, Hunter and Larson (1988), relying completely on
predictive validity to evaluate the effectiveness of test composites in a classification context,

believed that a single test composite, a measure of general cognitive ability, would provide
more classification efficiency than the existing ASVAB composites. Such a position in

favor of a single measure is tantamount to claiming that the joint predictor-criterion space is

unidimensional.
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Our previous analysis showed that the current Army AA composites are of limited

value, but we also show that considerable classification efficiency is potentially attainable

from the present ASVAB if the battery is used in accordance with classification efficient

procedures (Zeidner and Johnson, 1989b). We believe the ASVAB would possess even

more potential classification efficiency (PCE) if its development had not been largely based

on a search for increasing the predictive validity of specific aptitude tests rather than on

procedures for increasing mean predicted performance (MPP). 1 Thus, we are not

pessimistic regarding the future of tests developed for use in classification batteries. We

acknowledge that PCE is difficult to achieve unless specific efforts are directed at

developing predictors, identifying efficient tests for the battery and designing procedures

that have as their goal increasing PCE.

The utility of an operational classification battery can be increased by:

(1) improving the classification efficiency of the existing battery; (2) increasing the number

of job families with their associated test composites within the existing job family structure;

(3) substituting full least square (FLS) test composites for existing Army operational
aptitude area (AA) composites; (4) introducing a single stage multidimensional screening

(MDS) in place of the current two-staged system; (5) clustering jobs into job families by a

method which maximizes classification efficiency. Aspects of the first and second way of
increasing classification utility are examined by this research. Studies for evaluating all five

strategies are described in Zeidner and Johnson (1989b, Chapter 5). All aspects of these
five strategies not investigated in this study are currently being investigated in other studies

based on Project A data.

A. OBJECTIVES OF STUDY

The primary purpose of this research is to estimate the benefits attainable from
improving the efficiency of the Army's classification and initial assignment system through

increased classification efficiency of the ASVAB. This is examined by contrasting test

selection methods based on opposing personnel classification theories and estimating the
utility that can be expected from the use of classification methods over selection efficient
methods. The study is also designed to assess the effect of increasing the number of

PCE is defined as the MPP resulting from use of "best" assignment composites and an optimal
assignment algorithm to place each entity in a job. Classification efficiency (CE) is defined as the
MPP resulting from the use of actual assignment composites and actual assignment procedures to place
each entity in a job.

S-2



classification efficient aptitude area (AA) predictor composites corresponding to job

families and the effect of improving the hierarchical classification efficiency (HCE) of the

assignment process. Each of these proposed changes to the current Army system is

expected to improve classification efficiency.

Differential assignment theory predicts that classification utility can be maximized

by the use of the full set of least squares estimates rather than the existing AAs as estimates

of predicted performance. The changes in test selection and predictor/job family structure

proposed in this study should provide a further increase in utility.

The tenets of differential assignment theory (DAT) can be contrasted to an approach

which proposes predictive v iidity as the only relevant and useful means of achieving

classification efficiency. 2 The existing Army AAs were designed to maximize predictive

validity, and, as argued by Zeidner and Johnson (1989b, Chapter 1), fail to capitalize on

differential validity as required for a classification battery. Zeidner and Johnson also

introduced the distinction between hierarchical classification efficiency (HCE) and

allocation efficiency as different but often overlapping sources of classification efficiency,

and argue that neither are appropriately utilized by the current Army system. Maximizing

differential validity improves potential allocation efficiency (PAE). The HCE component of
potential classification efficiency (PCE) could be improved by capitalizing on divergent job

validities or job importance and thus enabling differences in criterion performance across

jobs to influence assignment decisions. In addition to a comparison of test selection

methods, this study: (1) compares assignment strategies designed to represent pure

allocation effects with those which also capitalize on HCE; (2) investigates the effect of

number of jobs, or job families, to which personnel are assigned; and (3) investigates the

effect of the number of tests in the operational battery. All of these effects are examined in

terms of PCE.

Relatively cost-effective modifications in the way that aptitude information is used,

in the context of the present Army job families and predictor composites, is shown to

improve potential classification efficiency beyond what is possible under a selection

efficient system as presently used. The research findings of this study show how the

services could achieve increased productivity of a magnitude that would cost over

100 million dollars to achieve by use of higher selection standards.

2 Tenets of DAT include use of MPP for the measurement of classification efficiency; this theory is
described in Chapter V.
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One of the study's methodological goals is the determination of an appropriate

psychometric index for selecting tests from an experimental battery with the goal of

maximizing the classification efficiency of an operational test battery. Horst's index of

differential efficiency (H) and modifications of HId have been used in the limited number of

studies designed to examine differential validity relative to selection efficient methods (e.g.,

Horst, 1954; Harris, 1967; McLaughlin et al., 1984). There is some evidence that Hd

provides a less than perfect estimate of utility (e.g., Cronbach and Gleser, 1965; Johnson

and Zeidner, 1990). Hd was shown to be an inaccurate measure of PCE when it has a large

component of HCE (Johnson and Zeidner, 1990).

An alternative conception of the problem of maximizing differential validity was

discussed by Johnson and Zeidner (1990) and is examined relative to Hd in this study.

This alterntive, the point distance index (PDI), is based on a geomeric representation of

the joint predictor-criterion space, where the sum of the differences in the multidimensional

joint predictor-criterion space of performance estimates (LSEs) from the midpoint provides

a measure of differential validity. This experiment compares the effect of Hd with this

alternative psychometric index of test selection on PCE.

The study also provides one of the few demonstrations of a highly useful research

approach: model sampling to create synthetic scores combined with a simulation of

classification system features and the computation of mean predicted performance (MPP) as

the final output after assignment. This MPP can easily be converted to dollars and entered

into a consideration of trade-offs against costs in order to express the utility values of

alternative operational procedures. The algorithms and software developed for this path-

finding study provide most of the tools required to complete the other three of the four

studies described by Zeidner and Johnson (1989b) in the Appendices of Chapter 5.

B. RESEARCH QUESTIONS

Zeidner and Johnson (1989b) describe a number of research issues and questions in

Chapter 5. This study directly addresses several of these research questions and provides

tb software tools and practical experience with model sampling techniques to address the

remaining research questions presented in Chapter 5.

The issues examined in this study are as follows:

(1) Can an emphasis on classification efficiency in selecting tests for an operational
battery provide increased utility in the classification process? Which index is
the best predictor of classification efficiency in an operational battery?

S-4
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(2) How much increase in utility is provided through the doubling of the number
of aptitude areas and the corresponding job families without considering the
increased homogeneity within each family and the greater heterogeneity across
families that should result from shredding out 9 job families into 18? Any gain
in MPP in this study resulting from increasing the number of jobs from 9 to 18
is an underestimate of the gain that would result from a classification efficient
reconstitution of job families to accomplish this increase.

(3) How much of the utility resulting from increased PCE can be produced by pure
allocation effects as contrasted with both allocation and hierarchical
classification effects?

(4) What effect would the reduction in the size of the operational battery from 10 to
5 have on utility in a classification situation. More generally, what effect does
an increase in the number of tests in the battery have on PCE?

(5) Does the use of hands-on criteria reveal the presence of PCE to a greater extent
than the use of rating criteria?

C. RESEARCH APPROACH

The research approach adopted in this experiment follows from the manpower

allocation research of Sorenson and his colleagues in the 1960s (e.g., Sorenson. 1965;

Niehl and Sorenson, 1968; Olson, Sorenson, Hayman and Abbe, 1969; Johnson and

Sorenson, 1974). These researchers emphasized the need to simulate the essential
processes of a selection and assignment system in order to accurately evaluate the actual

and potential classification efficiency of the methods and tools used in alternative processes

(e.g., McLaughlin et al., 1984; Johnson and Zeidner, 1990). Consideration of the

complete context of assignment (i.e., the jobs, the applicant population, the predictor

battery, the assignment variables, operational constraints and the allocation algorithm)

permits a more accurate estimate of MPP by which to assess classification efficiency. It

also avoids the need for complex mathematical forrnulations of the classification problem,

thereby making it a more practical tool for estimating efficiency.

More specifically, the simulations conducted by these Army researchers used

samples of synthetic entities rather than empirically collected measures. This technique of

model sampling involves the transformation of normally distributed random numbers into

synthetic test scores which have specific statistical characteristics in common with a

prescribed population (Johnson and Sorenson, 1974). Used in place of empirical test data,

synthetic entities have the benefits of a flexible sample size and known expected

distribution, means and covariances. Using the concepts of factor analysis and matrix
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algebra, entities can be generated and transformed to reflect experimental conditions and

more closely approximate an applicant population than is possible using actual scores of

empirical samples (Johnson and Zeidner, 1989b, Chapter 4).

The flexibility of the technique allows the evaluation of conditions which could

affect the system but are not available in terms of actual empirical data. In particular, when

used to evaluate the conditions which affect optimal classification, a model sampling

experiment can eliminate the effect of correlated error between assignmen.t and evaluation

variables which, with empirical data, could only be controlled by seriously reducing sample

size. Estimating the utility of alternative test selection methodologies or allocation

algorithms is facilitated by simulating the rejection or assignment of entities to jobs.

Synthetic scores, the input to the simulated model, are used to calculate the predicted

performance scores (the "full least square (FLS) equation") for every entity in every job.

The output of assignment by LSEs (MPP scores in standard score form) presents a basis of

comparison for the classification efficiency of alternative situations. Thus, model sampling

is an ideal approach for testing hypotheses related to optimal classification.

Model sampling is used in this study to carry out the proposed comparison of the

PCE and PAE derived from alternative test selection methods. The process to be simulated

is: (1) the rejection of the lower 30 percent on a continuum based on a variable having the

characteristics of AFQT and (2) an optimal assignment procedure, based on a separate, full

battery LSE for each job and a linear program algorithm which provides optimal

assignment. Simulation conditions that are varied in this experiment include the number of

jobs, the number of tests used in assignment composites and a choice of jobs based on the

nature of the criterion. The inputs to the model are predicted performance scores (LSEs)

for a sample of synthetic entities from test batteries constructed by five alternative methods.

The outputs are MPP standard scores based on all the predictor variables and using the

same weights across all assignment conditions. The aim is to analyze PCE through MPP,

and, in so doing, identify the best index and conditions which affect optimality.

D. OPERATIONAL IMPLICATIONS OF FINDINGS

The experimental simulations conducted in this study suggest several areas for

change in the operational use of the ASVAB. These can be summarized as follows:

(1) Classification efficient predictors, selected from the Project A experimental test
pool by a method which maximizes differential validity, could augment the
current operational battery. Differential assignment theory indicates that
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practically significant increases in productivity can be obtained even with the
addition of one or two classification efficient tests to the existing ASVAB
battery. This study provides evidence that both Horst's index of differential
efficiency (Hd) and the point distance index (PDI), when used to select these
additional tests, will result in significantly more PCE than would result from
the most efficient index of predictive validity (Max-PSE).

(2) Doubling the number of Project A jobs from nine to eighteen provides up to a
ten percent increase in the overall estimate of performance. Subdividing
(shredding) existing Army job families in order to double the number of
composites (AAs) and corresponding job families would, if effectively done,
increase the average validities of the composites and decrease the average
intercorrelations among the LSEs based on the composites. Both of these
effects would increase PCE beyond that obtained from increasing the number
of jobs to which recruits can be assigned. It is expected that a more
classification efficient method of forming 18 Army job families would exhibit
considerably greater utility.

(3) Pure allocation effects, obtained by replacing the existing aptitude areas (AAs)
with full least square (FLS) composites of predicted performance, account for
most of the increase in PCE when classification efficient test selection methods
are used. Hence, utility can be increased without the need for weighting
assignment variables by the relative job validities or by values of perfoimance
on different jobs; i.e., without capitalizing on hierarchical layering effects.

(4) While it is commonly agreed that the predictive validity of a composite of four
to six optimally weighted variables would not be substantially increased by
addition of more predictors, it was found that classification efficiency increased
by more than ten percent when the number of predictors in the optimally
weighted composite was increased from five to ten.3

(5) Comparisons in this analysis were made among results obtained through the
use of classification efficient, as compared to selection efficient, indices after
the effects of selection (using a selection ratio of .70) were realized. If the
gains were instead compared to those from existing ASVAB composites, the
optimal set of classification efficient composites would be substantially greater
in number.

3 Since all assignment composites used in this study utilized all the tests in the "battery" of selected
tests, no distinction can be made between increasing the size of assignment composites and the size of
the battery. Unfortuntely, we did not save the regression weights for the assignment composites and
thus cannot say how many of the regression weights lie within some arbitrarily defined distance from
zero; tests whose weights fall within such an interval could reasonably be considered as having been
given a weight tat is equivalent to deletion. We could infer that our results apply to both the size of
assignment composites and the test battery--if the same proportion of tests from the 5 and 10 test
batteries were to fall within such an interval.
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(6) In most of the 5 test composites only three of these "best" tests come from the
existing ASVAB; less than half of the "best" tests in the 10 test composites are
in the ASVAB.

In a previous study (Zeidner and Johnson, 1989b), we estimated that implementing

the tenets of differential assignment theory would bring about a large aggregate gain in

MPP. Our "ball park" estimate of gains attributable to improved operational procedures to

increase PCE exceeds 200 percent in the aggregate. We predicted that the largest

contribution to PCE gains are FLS predictor composites; next are enlarged and restructured

job families; and then the addition of classification efficient tests in the battery.

The change to FLS composites provides the maximum PCE available in the present

ASVAB and job families. Prior results (Zeidner and Johnson, 1989b, p.64; Sorenson,

1965) estimated the gain over the existing operation to be about 100 percent. The present

study showed an additional performance gain as high as 22 percent (or .07 of a standard

deviation of MPP) using a PCE-efficient index over a predictive validity-efficient index to

select five tests from an experime-tal battery of 29 tests. We find a non-trivial gain (of

about 40 percent) in MPP by the use of FLS composites comprised of classification

efficient tests over the present ASVAB FLS composites. 4 We know from the cost-benefit

aaalysis of Nurd and Schmitz (1989) that improvements of one- or two-tenths of a standard

deviation may result in very large dollar gains to the Army each year.

4 We obtain this estimate (of 40 percent) by subtracting the gain due to selection from the MPP obtained
in this study and comparing the resulting gain over random assignment with the comparable gain over
random assignment shown by ASVAB FLS composites reported by Nord and Schmitz (1989).
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I. RESEARCH ISSUES

A. IMPROVING CLASSIFICATION EFFICIENCY

Two erroneous schools of thought concerning the improvement of classification

efficiency have contributed to the steady decline of classification efficiency in the aptitude

areas (AAs) of the services. One group seeks to improve the set of test composites by

eliminating overlapping tests and to otherwise reduce the intercorrelations among the test

composites (e.g., Thordike, 1950). The other group claims that classification efficiency
need not be considered since maximizing predictive validity will also maximize

classification efficiency (e.g., Hunter, Crosson and Friedman, 1985; Schmidt, Hunter and

Durin, 1987). In fact, whether the objective is to maximize the selection or classification

efficiency of a fixed operational battery, a least square estimate of job performance based

on all tests in the battery is the best predictor composite to represent a job or job family.
When AAs consisting of less than the total number of tests in the battery are to be utilized,

composites which maximize predictive validity (i.e., selection efficiency) are not the same

ones as those which maximize classification efficiency.

Thus, the maximization of classification efficiency involves much more than the
reduction of intercorrelations among test composites. Also, classification efficiency can

never be improved by selectively eliminating tests from composites. Nor can classification

efficiency be achieved by maximizing predictive validity without considering classification

efficiency.

The potential classification efficiency (PCE) of an operational classification battery

can be measured as the mean predicted performance (MPP) resulting from optimal

assignment of personnel using least square estimates of performance (full least squares

(FLS) composites) as the classification variables (Johnson and Zeidner, 1990). PCE can

be improved or degraded by the test selection process utilized to make changes in the

operational battery. It cannot be maximized by changing AAs, nor, in practical situations,

by eliminating tests from AAs. However, whenever appropriate research data is collected
on an experimental battery of predictors, one may improve the classification efficiency of

AAs already maximized as FLS estimates by improving the PCE of the battery. Project A



provides such an opportunity. Except for the possible effects of Zeidner and Johnson's

reports on selection and classification utility and the example provided by the present IDA

project, the consideration of new predictors for inclusion in the ASVAB would most likely,

like all other test selection by the services during the past two decades, have been

essentially based on the severely limiting goal of improving predictive validity.

Maximum classification efficiency is obtained when each job has its own FLS

aptitude area composite. The number of jobs in each job family would ideally contain the

maximum number which permits reasonably large va!idation samples. The trend in the

services has definitely been towards smaller and smaller numbers of job families forcing

each AA composite to represent more heterogeneous sets of jobs. The Air Force has four

job families and the Marine Corps has six. The Army has nine and the Navy has eleven,

but both are under considerable pressure to conform to the other services. This trend, like

the reliance on predictive validity to obtain PCE, is largely due to the impact of the validity

generalization partisans' preference for believing that a single general aptitude measure is

adequate for all operational purposes.

Zeidner and Johnson (1989b, Chapter 1) explain all classification effects as either

hierarchical layering effects, allocation effects, or an inseparable combination of both.

Hierarchical classification efficiency (HCE) can be obtained from capitalizing on disparate

means and variances of predicted performance (PP) measures across criterion variables by

weighting jobs according to their validities and/or value. Allocation efficiency (AE) can be

achieved from capitalizing on differential validity; the differences in predicted performance

across jobs within individuals. The current Army aptitude area (AA) composite predictors

reflect no HCE and a disappointingly low amount of AE.5 These Army composites were

standardized to have equal means and variances and, since they are unit-weighted

composites of three or more ASVAB tests and are not weighted by either job validity or

value, they, consequently, possess no HCE. Furthermore, the ASVAB battery and its

composites were not constructed to capitalize on differential validity and hence severely

limit AE. The present ASVAB, however, has much more AE than can be obtained from

using the existing AAs in making optimal assignments. This is a direct result of focusing

on the predictive validity of the composites rather than on their classification efficiency.

5 It can be argued that since the Army appears to set higher cutting scores for entry into MOS with
higher validity and/or greater value (in addition to the consideration of the "difficulty" factor), some
HCE is indirectly introduced.



Zeidner and Johnson's (1989b) analysis showed that the Army AA composites hold

considerable PCE if the ASVAB is used in accordance with differential assignment theory.

This would imply the use of full least square (FLS) composites in place of the AAs as

estimates of predicted performance which would provide all of the PAE present in the

ASVAB. Weighting these FLS composites by job validities or values, depending on the

availability of explicit statements of value from policymakers, would further provide HCE

for augmentation of AE.

The present research assesses the effects of several of Zeidner and Johnson's

(1989b) proposed changes in the operational use of the ASVAB which are intended to

improve classification efficiency. Its focus is on the effect that test batteries selected to

have inherently more PCE have on mean predicted performance after assignment; that is,

on classification efficiency. The research design also permits c'amination of the effect on

classification of having more AAs to be used for making assignments when the augmented

set of assignment composites has not been improved with respect to homogeneity within

job families or heterogeneity across composites. If there is a gain from having more

composites under these conditions, one could conclude that only the "tip of the iceberg" has

been observed with respect to the gains that might be expected from a classification efficient

reconstitution of the Army AAs into a larger set of AAs and corresponding job families.

The effect of reducing the classification battery from 10 to 5 tests, selected either for

maximization of classification or selection efficiency, is examined in this study. The effect

of using "best" assignment variables with all HCE removed is also examined. The nature

of the selected tests is considered and compared with those that have been included in the

ASVAB. Finally, the implications of this study regarding how tests should be selected in

order to improve the PCE of the ASVAB are presented.

A new index, the Point Distance Index (PDI), which was first reported in Johnson

and Zeidner (1990), is compared to Horst's index of differential efficiency (Hd) with regard

to its contribution to the PCE of classification batteries. Another index described in

Johnson and Zeidner (1990), Max-PSE, is believed to be a superior measure of selection

efficiency than Horst's index of absolute validity (Ha), although this is not empirically

proven in this study. A comparison between Ha and Max-PSE is not made here since a

simulation of selection and a measure of selection efficiency would be required. This is

beyond the scope of the study.
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B. ESTIMATING CLASSIFICATION EFFICIENCY

Constructing a test battery which maximizes classification efficiency implies the

ability to measure the potential contribution of a predictor to the classification efficiency of

the entire test battery (PCE) before it is selected for the battery. Horst (1954, 1956), who,

along with Brogden, pioneered the methodology for constructing classification efficient

batteries, stated the problem as one of defining an index of differential validity (DV) to
"select those particular tests, no greater in number than prespecified, which would most

accurately predict differences in success for all possible pairs of activities" (Horst, 1954,

page 2). Horst's index of differential validity, Hd, only applies to the measurement of the

PCE of a battery when FLS estimates are used for all assignment variables; Hd cannot be

used when the assignment variables are to assess the classification efficiency of AAs. Hd

could be modified to compare the capacity of alternative sets of test composites for

capturing the potential DV, and hence PCE, of each such set of assignment variables

(McLaughlin, et al., 1984; Johnson and Zeidner, 1990).

A battery constructed for selection decisions would favor predictors which provide

the maximum average correlation with the separate criteria, also taking into account the

effects of all previously selected predictors. To this end, Horst (1955) presented an index

of absolute prediction (Ha) which, when used for test selection, would enhance but not

maximize the battery's potential selection efficiency (PSE).

The index Ha is based on the average squared multiple correlation coefficient (R2)

depicting the relationship between the test battery and each of the job criteria. This

averaging of the R2 values instead of the R values makes Ha comparable to Hd, which is

also a "squared" concept.

The multiple predictors of criterion success required by classification imply that

both the criterion correlation coefficients and intercorrelations of predicted performance

measures should be accounted for in any index of efficiency (Horst, 1954; Horst and

MacEwan, 1960). Horst's (1954) index of differential predictive efficiency (Hd) was first

conceptualized as the sum of the covariances describing the relationship between the

differences among pairs of predictors and the differences among pairs of criteria. Horst

provided an equivalent expression which made this covariance statistic more convenient for

use as a test selection index. In this expression, Hd was defined in terms of the sum of the

squared validities uf the independent component of each trial test as a predictor of the

differences among criterion scores. Computationally, this can be expressed as the sum of

the variances of the difference scores between all possible pairs of predicted performance
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measures. The larger the average variance as shown by Hd, the greater the differential
prediction of the battery.

The value of test selection by Hd for classification was shown in an assignment
simulation by Harris (1967). This compared Hd with Horst's index for absolute prediction
(Ha) and showed that when a battery is to be used for optimal assignment, predictor
selection by Hd results in greater classification efficiency than selection by Ha. Harris
showed a ten percent improvement in the MPP of five tests selected by Hd over Ha.

Both the usefulness and sufficiency of Hal, however, have been debated. Cronbach
and Gleser (1965) questioned Hd's applicability to assignment given that it does not
consider rejected applicants, assuming instead that all individuals tested are to be assigned.
They argued that Hd would only provide an efficient battery in "quota-free adaptive
placement" where each individual's ability profile can be considered independently of
external restrictions. In addition, the same authors questioned its accuracy by the fact that
only in specific situations, such as equal criterion variances and weighting, will Hd be
proportional to gains in utility.

This criticism is partially addressed in the present research which presents a
modification of Hd as one of the five test selection indices to be compared. It is argued that
this index (Mod. Hd) is a closer estimation of utility when efficiency cannot be derived
from disparate predicted criterion variance (i.e., HC effects). In this situation, the
efficiency index should be designed to detect the PAE inherent in the battery and in so
doing provide a more accurate reflection of utility.

Recent research has compared Hd to Brogden's (1959) estimate of MPP. When all
the classification efficiency in a battery is attributed to allocation effects (i.e., job validities
and values are equal), Brogden's tabled statistic (an order statistic) times the product of the
average absolute predictive validity of the LSEs (R) and the square root of one minus the
average of the LSE intercorrelations is r PAE. Only in this situation is Hd, a measure of
DV, proportional to Brogden's measure of YIPP (Johnson and Zeidner, 1990, Chapter 2).
This is the only direct link between lid and the benefit component of utility that has been
published. When HC effects contribute to PCE [i.e., job validities and predicted
performance (PP) variances vary across jobs], there seems to be less justification for using
Hd as an indicator of MPP (i.e., PCE). Hd contains variance sources that are not
considered in Brogden's model, and Johnson and Zeidner (1990) show that these
extraneous sources of variance cause Hd to vary away from MPP for several known
conditions where both Hd and MPP can be computed. Under these circumstances, Hd does
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not have the proven link to utility that Brogden's model can pro 'ide. Only the intuitive

relationship described by Horst remains.

Horst's computational formula for lId makes sense only when LSEs are used both

as the measure of predicted performance and as assignment variables. Horst's intuitive

concept, however, could be extended to the situation where predictors are not LSEs.

Alternatives to Hd, while based on the same general principle, are designed to be used in

less restrictive conditions. For instlce, when the assignment variables are not LSEs as

required by Hd, an alternative estimate of CE instead of PCE is necessary. As part of the

Army's Project A, McLaughlin, et al. (1984) compared the DV obtainable from different

sets of ASVAB aptitude area (AA) predictor composites for 98 jobs (MOS). They wished

to treat each composite (including AAs that are not LSEs) as a predictor, in the sense of

Horst's algorithm, to be assessed in the context of HC effects, highly correlated predictor

composites, and a varying number of job families (m) across composite sets. They

developed a modification of Hd which would permit, intuitively, a comparison of a Horst-

like index of the efficiency of composites which are not LSEs to the Hd obtained using

composites which are separate LSEs for each job. Specifically, differences between all

possible criterion (MOS) pairs and differences between predictor pairs (the LSEs based on

the AA composites corresponding to the MOS pair) were correlated to produce an index,

M. One hundred percent efficiency was defined as the use of 98 LSEs to represent each

composite so that there was one regression equation for each MOS. This was measured

using the index H, where mH 2 = Hd when jobs are unweighted. The "relative efficiency"

of alternative composite sets as compared to this ideal was then computed as a ratio of M to

H. This ratio was used to compare the different composite sets with each other. In one

N ersion of M and H, decisions involving MOS with high frequency accessions were given

greater weight in the calculation of both M and H.

The results indicated that both the current and alternative sets of composites

reflected only 45% to 67% of the DV contained in the ASVAB, with the DV generally

being lower for higher frequency MOS. These results are more meaningful than would

have been obtained using H or Hd for evaluating sets of composites that are not LSEs.

However, they are not as meaningful results as could have been obtained using a more

justifiable modification of Hd than is provided by M.

Horst's index of differential validity (DV) was based on his intuitive belief that "the

higher the relationship between the differences between assignment variable scores for the

ith and jth jobs with the differences between predicted performance (PP) for the ith andjth
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jobs, as averaged over all values of i and j, the more effective the total set of assignment

variables for making classification decisions." Horst provided a number of computing

formulae which capitalized on his choice of the PP for each job as constituting both the set

of assignment variables and the set of criterion variables. The computing formulae based

on this assumption included the "squared differences" computing formula McLaughlin

et al. chose to slightly modify to provide the index they call H. The use of the same PP
variable as both the assignment and the criterion variable permits computing the DV index,

either Hd or H, as a function of the squared differences between the PP scores of the ith

andjth jobs. When the assignment variables are not PPs (e.g., as when the Army Aptitude

Areas or experimental sets of classification composites are being evaluated), this

simplification (the "squared differences" computing formula) is not available.

Unfortunately, the formula for M is based on a modification of the "squared

differences" computing formula, despite the fact that M is intended for use when the

assignment composite is not a PP composite, and for this reason alone is an inappropriate

measure of DV. Also, instead of using the differences between the scores of the

composites being evaluated as assignment variables as the predictors of the differences

between corresponding criterion variables (what they should have done), McLaughlin et al.

use the "best" weighted sum of the pair of test composites to predict criterion differences.

The substitution of such a regression equation for the two assignment variables is certain to

inflate the magnitude of the relationship between the differences of each pair of predictor

variables and the differences of the corresponding pair of criterion variables. Thus, M

provides an inflated estimate of DV which will be more inflated for some sets of

composites than for others, as well as generally over-estimating the amount of total DV

explained by operational and experimental composites in their role as assignment variables.

One of the central issues to be addressed in the present research involves a

comparison of different test selection indices for maximizing PCE or PAE. Four alternative

indices are compared to Hd. Firstly, an index aimed at maximizing p"1: (Max-PSE) is

proposed as a more efficient alternative to tHorst's index of absolute predic.on, Ha. Max-

PSE, which is included to represent an assignment battery constructed to be selection

efficient, provides a basis of comparison against the "PCE" indices (Johnson and Zeidner,

19.0, Chapter 3). This maximizes the validity of the "best" single composite that can be

obtained from a battery, where "best" applies to the prediction of criteria for a combined

sample of all jobs. Max-PSE also maximizes the increment of selection efficiency of each

successive test to be included as the next addition to a single "best" weighted composite to
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be used for selection. A selected test is one which, together with the previous test(s)

selected, provides the largest average multiple correlation coefficient.

Secondly, in order to eliminate the HC effects which make Hd lose its

proportionality to PAE, the semi-partial correlation coefficients for each predictor are

weighted to provide an adjustment which avoids the effects of unequal validities. This

produces an adjusted Hd index which, it is hoped, will capture the PCE due to allocation

efficiency previously masked by the effects of HC (Johnson and Zeidner, 1990, Chapter

3).

Thirdly, Johnson and Zeidner (1990) proposed a direct alternative to Hd. The

point distance index (PDI) is more sensitive to the distribution of LSEs on different

dimensions in the joint predictor-criterion space to provide comparable coverage of all jobs.

Although two sets of jobs may be clustered differently in the joint space (implying a

different degree of multidimensionality and PCE for each set), it is feasible that both sets

result in the same sum of squared distances from the midpoint, and hence the same value of

Hd. This implies that the more uneven the LSEs' coverage of some jobs as compared to

others, the less effective Hd is as a measure of PCE in comparison to PDI.

The PDI is proposed as a correction for the above deficiency since it is more

sensitive to the evenness of coverage of job LSEs. The greater the average distance among

LSEs (as contrasted to the squared distances), the more even the coverage and the greater

the potential for allocation efficiency. This index for test selection involves the

maximization of an average distance fror, the midpoint of the multidimensional space. The

distinction between PDI and Hd essentially lies in the methodological approaches they take.

PDI uses the measurement approach of multidimensional scaling while the computation of

Hd can be obtained as a factor analytic representation of selected tests as factors. PDI has

been tentatively recommended as a bettex measure of PCE than Hd (Johnson and Zeidner,

1990, Chapter 3).

Finally, an adjusted PDI index is used in the same way and for the same purpose as

the adjusted Hd index--to eliminate HC effects. The adjusted PDI is expected to be a better

representation than the adjusted Hd of the allocation efficiency present in the battery.

In sum, the test selection comparisons draw from the original work of Horst which

was directed at designing a predictor battery that maximized DV, and hence PCE. The

addition or deletion of a test from a classificat;on battery is accomplished using a figure of

merit vhich optimizes DV or an alternative estimate of MPP (such as PDI). Improving DV
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certainly increases the PAE and probably the HCE of a test battery; a multiplicative

weighting of performance estimates according to their appropriate job validities will occur,

taking advantage of HC effects. Several alternatives to Horst's Ha and Hd have been
proposed as potentially better measures of PSE and DV. This research is designed to

compare some of these alternatives in the context of several other research questions,

including whether the number of jobs, the size of the battery and the type of criterion have

practical effects on classification utility.
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II. RESEARCH METHOD

A. THE MODEL SAMPLING APPROACH

A model sampling approach to personnel research allows the generation of random

samples of synthetic test scores for simulating the selection and classification of any given

population of applicants. At the cost of assuming knowledge of the statistical parameters of

a population (e.g., the youth population), model sampling techniques allow as many and as
large samples as desired. The parameters of each sample provide best estimates of the

universe parameters.

Considering the need to accomplish a complex simulation of the classification

process in the desired experiments, the use of a large data bank containing an unbiased

empirical sample of the required test and criterion scores is the only alternative to the use of

model sampling. Nord and Schmitz' (1989) simulation of alternative Army assignment

strategies provides an example of the use of empirical samples of measures. In dealing

with existing scores, they were obliged to make several assumptions regarding such

parameters as: (1) the distribution of the youth population of scores (since the scores were

from selected and assigned soldiers) and (2) the selection ratio (only selection ratios larger

than were present when the data were collected could be simulated). The complexities of

policy and management constraints required that individuals be used in much the same way

as synthetic score vectors. Synthetic entities allow more thorough knowledge of and hence

control over the samples. However, assuming that universe parameter estimates are

credible and that the data bank is both large and unbiased, there are still advantages

accruing to each of these alternative approaches.

Clearly, empirical scores derived from an unbiased data bank are more realistic with
respect to the period in which the data was collected. Despite greater realism, however,

such a simulation would represent only a cross section of the system in time and niay not

extend to the input coming in under changed conditions and policies. Simulated input

based on a normal distribution of synthetic scores, followed by the imposition of policy

constraints and decisions, may provide a better basis for extrapolating to future periods

than imperfect samples drawn from a past era.
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Model sampling as a source of test and criterion scores permits the simulation of

input outside the range of the samples included in the data bank and permits unlimited

sample sizes. Special samples can be drawn representing segments of the population that

do not exist in the data bank. This is especially valuable when simulating and evaluating

alternative selection policies. In this study, the primary advantage provided by the model

sampling approach is that a realistic population can be designated, another analysis sample

created and further large numbers of replications for 30 separate combinations of

experimental conditions can be generated, each replication using a random sample of

synthetic scores.

The synthetic scores produced by model sampling, with their prescribed

expectations for variance-covariance matrices, are most readily generated with Gaussian

(normal) distributions and selection effects imposed as a simple truncation, leaving the

expected distribution of the upper portion of the sample with a truncated normal

distribution. The applicant group being simulated would in fact be selectively self-censored

in the upper tail of the bell shaped curve. That is, the higher the cognitive ability test

scores, the less likely an individual is to enlist into the Army. This self-censoring effect

can, at some additional cost, be dup!icated in a model sampling experiment, but so far no
other investigator has seen the necessity of achieving this degree of realism, and neither do

we for our present research purposes.

The model sampling approach used by Harris (1967) to evaluate test batteries

selected either by Hd or Ha provides a simpler precursor to the present study. The inputs to
the simulation were the test scores for synthetic entities representing sets of selected tests

(batteries) selected by the different methods. This approach generated scores based on the

different batteries which would have the same statistical characteristics and covariance

matrices as samples from a normally distributed youth population. Optimal assignment

was again based on separate FLS composites for each job, and uniform quotas were

assumed across jobs. In this way, the efficiency of differential over absolute assignment

was established.

The present study has the advantage of being able to use the Project A pool of

experimental predictor and criterion measures. P -ject A provides the best experimental test

battery evaluated by the Army in over a decade and provides carefully designed and

collected performance criteria. Input into 19 MOS spread over separate career management

families (CMF) (representing about half of such CMFs) is included. By correcting

Project A empirical validation results for selection and classification effects back to a youth
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population, credible population parameters appropriate for these utility analyses are

obtainable. The availability of the Project A data provides a rare opportunity to conduct a
study of this nature and at this level of experimental rigor.

B. RESEARCH DESIGN

The study is designed to compare the effectiveness of five test selection methods in

the context of three other factors affecting classification efficiency--the number of tests in
the battery, the number of jobs to which entities are optimally assigned and the nature of the

job sample.

The five test selection indices are: (1) Horst's differential index (Hd) which

approximately maximizes differential validity; (2) the point distance index (PDI), which is

an alternative to Hd aimed at providing an improved measure of PCE by favoring tests
which provide a more uniform (hence increased multidimensional) coverage of the joint

predictor--criterion space; (3) a modified Horst's differential index (Mod. Hd), which

eliminates hierarchical classification effects and maximizes PAE; (4) a modified point

distance index (Mod. PDI), which also eliminates hierarchical classification effects while
improving the uniformity of coverage in the joint predictor--criterion space and maximizing

PAE; (5) Max-PSE, which maximizes the predictive validity of the best single composite
variable by choosing the combination of tests with the largest average multiple correlation.

A five-test battery and a ten-test battery are compared to assess the practical

efficiency of the test selection methods. Given that the ten-test battery encompasses the
five-test battery, it is assumed that the five selection treatments will be more differentiated
in the smaller battery. This should provide greater sensitivity to methodological differences

and any superiority of one index over another. However, if such differences can be

observed under a larger battery, a stronger case can be made for the use of a classification

efficient index. The ten-test battery should result in higher overall MPP because it is more

representative of a full set of predictors.

A sample of nine jobs is compared to a sample of eighteen jobs.6 An increase in

MPP is expected when the number of jobs is increased from nine to eighteen.

6 Of the 19 jobs for which validity data was available, the one with the smallest validation sample
(N = 69) was dropped from the study. Dropping this one job permits us to have the same number of
jobs in the two subsets of jobs (those with and those without hands-on criterion data).
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Brogden's (1959) model depicted each job as providing a measurable expansion of

the joint predictor-criterion space and thus enhancing classification efficiency. Brogden's
model and assumptions are not replicated in this study. Therefore, the increase in MPP

from nine to eighteen jobs should not be as large as expectiud by Brogden at the higher end

of the distribution. Any observed increase in FCE or PAE when more FLS composites are

used for selection would have implications for the design of validation studies for an

organization having a large population of jobs such as that of the Army. Such an

organization can usually provide further gains in MPP by constituting a large:- number of

job families so as to increase the homogeneity within job families and the heterogeneity

across families and also increase R and decrease r in the function R(l-r). However,

Brogden's multiplier of R(1-r) should be unaffected by the experimental conditions of this

study; only his third multiplier, the order function, is varied.

A nine-job sample with hands-on criterion measures (e.g., work samples) is

compared to a nine-job sample without hands-on measures (e.g., supervisory performance

ratings). The more "objective" measures, which are necessarily more job-specific, are

expected to increase dimensionality, and therefore enhance PCE. The eighteen job

condition combines nine jobs from each criterion set.

Thirty possible treatment combinations result from each of the above independent

variables (see Table 1). The relative effectiveness of one condition over another (i.e., each

cell of Table 1) is established by comparing tie results of a complete assignment simulation

for every experimental condition. Each condition's selected test battery produces predicted

performance scores (LSEs) for every individual in every job (assignment variables). The
result of each assignment is the evaluation or dependent variable; that is, the mean predicted

performance (MPP) for the assigned group is the unit of analysis that makes up the
individual observations for use in the analysis of variance that permits the testing of

statistical hypotheses. This MPP standard score is obtained by applying "best" weights,

separately computed for each job using the designated population data, to the synthetic test

scores of entities in each of the cross samples (after optimal assignment of entities)--and

then averaging across all entities in each sample.

The cross-validation design employed in this study uses the designated universe to

obtain weights for the predicted performance (PP) scores used for evaluation and an

independent random sample from this universe to generate the weights to be used to

compute the PP scores used in the cross-samples as assignment variables. For the

purposes of this study, the "designated universe" represented by the Project A concurrent
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validation data corrected for restriction in range and criterion attenuation to estimate

predictor intercorrelations and validities for the youth population. Transformation matrices

for the generation of the "analysis" sample are computed from the "designated population"

covariance-validity matrices and applied to synthetic normal deviates to create samples of

synthetic scores for each of the 18 MOS. These synthetic scores are generated for test and

criterion variables. Predictor intercorrelations and validities for the creation of assignment

variables are then derived from the synthetic test scores. The same number of entities were

generated for each of the 18 "job" sub-samples as were available in the Project A empirical

sample.

Table 1. Experimental Design

NO.TESTS -* 5 10
INDEP. •II. --------------

VARS. SELECTION Mod Mod Max Mod Mod Max
INDEX -] PDI Hd PDI Hd PSE PDI Hd PDI Hd PSE

NO. JOBSIFCRITERION

~. ISOURCE

HANDS--
ON
TESTING

9

NO
HANDS -ON
TESTING

9 WITH,9
WITHOUT

18 HANDS-ON
TESTING

The entities for the 600 assignment replications (20 cross-samples under 30

experimental conditions) are generated in the same way as those in the analysis sample

except that criterion variables are not generated; only test scores are used from the 20 cross-

samples. However, the weights for assignment variables are computed from the "analysis"

covariance-validity data. In the generation of cross-samples all entities in the lower 30% of

the distribution of synthetic AFQT scores are rejected to form an Army input sample at a

selection rdtio of 0.70. Parameter values (weights) obtained from the "analysis" sample are

applied to each cross-sample entity to compute the assignment variables (LSEs) and on the
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basis of these scores, each entity is assigned to a job using an optimal assignment

algorithm. The evaluation LSE scores, which provide a separate evaluation variable for

each job, are averaged to provide the MPP score for the total assigned group of entities.

The weights used to compute the evaluation LSEs for a given job are based on population

data and are the same across all experimental conditions. Thus, correlated error between

the assignment variables and the evaluation variable is avoided. This research paradigm is

depicted in Figure 1.

Simulations of the classification process are conducted for 600 replications of

synthetic scores of 198 entities in each. Each of these 600 sets of entities is one replication

in a three-factor, repeated measures analysis of variance design. This design has the

following factors and levels:

a. test selection method (5 levels: Horst's differential index (Hd), the Point
Distance Index (PDI); modified Hd; modified PDI; and Max-PSE);

b. number of tests selected for operational battery (2 levels: 5 tests and 10 tests).

c. number and criterion type of jobs (3 levels: 9 jobs with hands-on criteria; 9
jobs without hands-on criteria; and 18 jobs with combined criteria).

Repeated measures (20 replications under each condition) are obtained for each of

the 30 possible experimental conditions (i.e., for each cell of the results matrix in Table 1).

The output of the simulation process, therefore, is an MPP standard score for each of the

600 replications of assigned entities.

C. PROCEDURE

1. Obtaining Youth Population Parameters from Project A Empirical Data

The empirical scores collected by Project A allowed the estimation of youth

population parameters required for the experimental simulation. For 19 Military

Occupational Specialties (MOS) (see Appendix A), Project A provided covariance data for

29 predictor variables (9 ASVAB tests and 20 additional experimental predictor constructs)

and 5 criterion components. The experimental predictor measures were developed as

potential additions to the current set of ASVAB AA predictor composites representing the 9

existing job families. These new predictors were designed to capture cognitive and non-

cognitive abilities not covered by the ASVAB: spatial visualization and orientation,

perception and psychomotor skills, temperament/personality, vocational interest, and job

orientation (see Appendix B).
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1 Job validation sample sizes equal to those used in Project A first-term concurrent validation study.
2 Evaluation weights computed from Project A empirical sample designated as the population.

3 Sample size of assigned entities number from 200-300; in the aggregate, N numbers in the thousands
for each strategy.

4 Predicted performance is computed using the same evaluation variable and same weights for each job
across all experimental conditions.

Figure 1. Typical Model Sampling Research
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Five separate performance (criterion) components were identified in Project A as

being descriptive of entry-level military job performance--general soldiering proficiency,

core technical proficiency, effort and leadership, personal discipline and physical fitness

and military bearing (Campbell, 1987; Wise, Campbell, McHenry and Hanser, 1986).

Performance measures such as hands-on work samples, supervisory performance ratings,

job knowledge tests and administrative measures were obtained from the concurrent

validation phase of Project A (Wise, McHenry, Rossmeissl and Oppler, 1987).

Four of the criterion components--general soldiering proficiency, effort and

leadership, personal discipline, and physical fitness and military bearing--play a role in

performance across all Army MOS and are predicted by the AFQT composite and other

selection indices, such as high school graduation (Wise, Campbell and Peterson, 1987).

The fifth component, core technical proficiency, covers aspects of performance which are

unique to each MOS. This proficiency is predicted by AA scores used for specific job

families.

Two criterion formulations were available in the present study. In the first, a

criterion composite was created from a weighted formula combining the five components

according to their rated importance for each MOS. The criterion weights (Appendix C,

Table C-3) were taken from Project A-initiated research by Sadacca, Campbell, White and

DiFazio (1988) which examined the most appropriate method for criterion weighting. The

second criterion formulation was represented by the core technical proficiency (CTP)

component. Wise, et al. (1987) reported that the optimal component for differentiating

between jobs on the basis of tests was CTP, with all other four components showing little

added differential effectiveness in this respect. In the present study, the test selection results

from each criterion were compared to determine which formulation provided greater

differentiation.

Youth population parameters were generated from the empirical sample covariances

for the 29 predictors, 5 criterion components and ASVAB intercorrelations for a national

sample of American youths. These ASVAB intercorrelations (see Appendix D) represented

the 1980 reference Jouth population for 18-23 year olds (Mitchell and Hanser, 1984).

An estimate of the youth population for the 29 predictors was obtained by

implementing a dafa correction procedure for selection and classification effects. This

algorithm encompassed two statistical corrections: a correction for restriction in the range of

the sample due to selection and classification, and a correction for criterion unreliability.
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The algorithm implementing these corrections was executed in the three stages summarized

below.

a. Correction for Criterion Unreliability

A correction for measurement error is especially important in the case of the

criterion composite since the reliabilities for criterion components are unequal. However,

corrections were completed for both the composite and single criteria. All sample

covariances involving at least one of the five criterion components were corrected for

attenuation using the general formula with the uncorrected criterion component correlation

in the numerator and the square root of the respective component reliabilities in the

denominator. A reliability of 0.85 was used for general soldiering and CTP, and a

reliability of 0.80 for effort and leadership, personal discipline and physical fitness and

military bearing (Zeidner, 1987).

b. Correction for Selection Effects

The availability of the ASVAB youth population intercorrelation matrix enabled the

ASVAB tests (the explicit selection variables) to be treated as variables drawn from an

unrestricted population. Utilizing the predictor covariances for the total sample of

incumbents, the remaining 20 restricted (implicit) predictors could be corrected for selection

effects. The correction procedure was based on Lawley's (1943) assumption that the

regression of the implicit predictors on the explicit predictors is linear and that the variance-

covariance matrix of the latter exhibits homoscedasticity given the former. This correction

provides an estimated variance-covariance matrix for the 20 implicit selection variables and

the 9 by 20 matrix of covariances between the explicit and implicit correction variables.

Gulliksen's formulae (1950, p.165, numbers 37 and 42) were applied to the youth

population covariance matrix for the ASVAB tests (explicit variables) and the covariance
matrix for the remaining 20 Project A predictors (implicit variables) for the aggregate of the

19 MOS. This produced a corrected variance-covariance matrix for all 29 predictor

variables (but no criterion variables) representing the selected group.

c. Correction for Classification Effects

Using the same Gulliksen formulae as for the correction of selection effects,

restriction of range corrections were completed for all covariances involving the 5 criterion

components. Lord and Novick (1968) cite Lawley's (1943) proof for applying a second

correction formula to an already corrected population. The corrected predictor covariance
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matrix from the previous stage is used as we estimate of the population predictor

covariances. At this stage all predictors are explicit selection variables and all criterion

components are implicit selection variables. This procedure was conducted using first the 5

criterion components and then core technical proficiency (CTP) alone.

The result of the correction procedure was an estimate of the unrestricted

(population) covariances with perfectly reliable criterion variables for the 19 samples. The

corrected covariance matrix was converted to a matrix of intercorrelation coefficients among

the 29 predictors. A weighted correlation of sums formula was then used to convert the

validities against the 5 criterion components into a validity against a single MOS criterion
variable. This produced unrestricted (i.e., universe) intercorrelations among the 29

predictors and two sets of the unrestricted (i.e., universe) validity coefficients--one for each

of the 29 predictors against the composite criterion variable and another for each predictor

against core technical proficiency.

2. Generation of Analysis Sample from Youth Population Parameters

The cross-validation design utilized random samples of synthetic entities

representing the youth population that were generated through model sampling techniques.

The empirical Project A data in turn was assumed to be an estimate of the universe predictor

intercorrelations and validity coefficients based on perfectly reliable criteria, and was

designated as the universe for the purposes of this study, The empirical sample designated

as the universe and the generated samples differed only as a result of sampling error.
Thus, operationally relevant decisions could be carried out on independently generated

samples, each of which is assumed to be drawn from a population with known parameters

(i.e., the designated universe).

The analysis sample nad the same number of entities within each job as there wre

actual individuals in each MOS of the empirical sample. The comparability of the analysis

sample and the sample designated as the universe was ensured by generating the synthetic

scores such that the expected sampling errors for intercorrelation and validity coefficients

approximated those of the Project A empirical sample.

The creation of the analysis sample proceeds from an N by n matrix of random

normal deviates, where N is the number of entities and n is the number of tests.

Employing the derivation of the basic structure of a correlation matrix (i.e., Rt = ADA',

where A is a matrix of eigenvectors and D is a diagonal matrix of eigenvalues), a

Grammian factor solution of Rt can be obtained (Ft = AD1/2 A'). This is preferred over a
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principal components (PC) factor solution since, in making more complete use of all

predictors' random normal deviates, the normality of the distribution is improvec. 7 Taking

each of the 19 job samples individually, Ft can then be used to generate test scores for each

entity in each job. The correlations of these scores with each other and with the criterion

scores provide the intercorrelation matrix (Rt) and the validity matrix (V) for the analysis

sample. Rt and V, computed on the synthetic scores, have as their expected values the Rt

and V of the designated population. This sample has the same expected variance-

covariance matrix among the total set of predictors and criteria as does the corrected

variance-covariance matrix computed from the Project A empirical sample. (See Appendix

E, Section I for a full derivation of the analysis sample.)

3. Test Selection Procedure

Test selection was performed on the analysis sample predictor intercorrelation

matrix (Rt) bounded below by the analysis sample validities computed separately for all 29
predictors for each of the 18 Army MOS (matrix V). There were six versions of V (and

hence (RtIV')') to represent the two criterion formulations and the three samples of jobs.
For the composite and CTP criteria in turn, V9A was created for the 9 jobs with hands-on

criterion measures, V9B for the 9 jobs without hands-on measures, and V 18 for the

combined set of 18 jobs. The same test selection algorithm was applied to all versions of

(RtIV')'.

Initially, the test selection routine was applied to the corrected, empirical Project A

correlations (the designated universe) in order to determine which criterion formulation

should be used in the analysis. The core technical proficiency (CTP) criterion displayed

greater independence between the selected subtests of the different batteries than ihe

composite criterion, and hence greater differentiation between job families. In addition, the

overlap between selected tests appeared to be less for the "best" 5 predictor case than the
"best" 10 predictor battery. This suggests that the use of the 5-test batteries against CTP

7 As compared to using a PC solution, where significant use is made of only the first few random
normal deviates in the X matrix (XF = Y), all elements in each row of X contribute more equally to
the value of each test score in Y when a Grammian factor solution is used as the transformation matrix,
F. Thus using the Grammian factor solution, instead of the PC solution, provides the same benefit as
using more random numbers to form each normal deviate--to better approximate a Gaussian
distribution. Since we assume that our synthetic test scores are normally distributed, we felt that the
use of both the Grammian factor solution and the sum of a number of random numbers to obtain each
normal deviate was desirable.
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criterion information would provide greater sensitivity for the detection of differing effects

from the separate use of the five indices.

Although this result may seem anomalous given that the composite criterion resulted

in more tests being selected overall (18 versus 15), the important finding for selecting one

of the criteria for use in this study is the minimization of overlap between batteries used to

represent the outcome of each of the five indices. In addition, the only other previous

study with a bearing on the selection of tests to improve classification efficiency (Harris,

1967), used a criterion more comparable to CTP. Further, it is important that the utility

results of the present study be comparable to those reported by Nord and Schmitz (1989).

Nord and Schmitz also used a criterion comparable to CTP.

Wise, Campbell, and Peterson (1987) used LISREL, separately for each of the

five criterion components, to test Project A predictor and criterion variables for

unidimensionality in the joint predictor-criterion (JP-C) space. A subset of the 29 predictor

variables of this study was used as dependent variables. The hypothesis that a single best

weighted composite fits all jobs was rejected with respect to core technical proficiency; this

hypothesis could not be rejected when the other four composites were each used as

independent variables. The four Project A criterion components for which a single measure

was an adequate predictor of performance across jobs should not be expected to have

differential effects across jobs. The single task performance-based or "can do" measure

among these four components was intended to reflect common military skills required of all

soldiers, and the other three components, the motivationally based or "will do" measures,

were intended to measure personal characteristics that we believe to be only slightly

influenced by special job characteristics. The results of Wise et al. (1987) provide an

additional argument for using the single criterion component designated as core technical

proficiency as the criterion variable in this study.

Consequently, the decision was made to use the single (CTP) criterion results for

all further analyses to determine the influence of different batteries of predictors on PCE

and PAE. Having made this decision, the analysis sample (RtIV')' matrix with the CTP

criterion was used to select the five-test and ten-test batteries for use in the 30 experimental

conditions.

The test selection algorithm after the first test is selected treats the orthogonal

component of each predictor variable in the combined intercorrelation-validity matrix partly

or completely as an orthogonal factor in the joint predictor-criterion space. By way of a
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square root (triangular) factorization, a factor matrix (F) of orthogonal test components is

constructed by successively adding a selected test as another column of F. The factoring
procedure remains constant while the precise standard of merit (the independent variable

test selection method) varies with the particular selection index used (i.e., Hd, PDI, Mod.

Hd, Mod. PDI or Max-PSE).

The trial column of partial correlation coefficients providing the largest figure of
merit becomes the next selected test and hence the next orthogonal factor to be added to F

for each iteration. Using this accretion-type algorithm, ten tests are identified sequentially

as having provided orthogonal components as columns of F. Execution of the algorithm
was performed in FORTRAN for each condition. The programs were terminated when 10

tests had been selected in order to determine the "best" 5 and 10 tests.

The experimental test selection phase produced a total of thirty different batteries

representing each of the cells of Table 1. The combined set of tests from all test batteries

produced by the 30 experimental conditions is defined in this study as the full least squares

(FLS) battery to be used in the calculation of evaluation weights and MPP scores for

each assigned group. The full set of tests selected numbered twenty (see Appendix F,

Table F-4).

4. Cross-sample Generation of Synthetic Scores

Based on the selected test batteries and the analysis sample predictor

intercorrelations and validity coefficients, a total of 600 assignment samples with an N of

284 in each sample were generated--twenty such samples for each of 30 experimental

conditions. These replications constituted the cross-samples on which assignment PP

scores (LSEs) were computed using weights derived from the analysis sample. These
weights were applied to the _,t scores generated using universe parameter values.

Predicted performance vectors for all entities in every job in each cross-sample have
the same relationship to the values in the designated universe as PP vectors have to the

same values computed in the analysis sample. This procedure can be summarized by the

following four steps which are discussed below (matrix formula derivations of this

procedure are given in Johnson and Zeidner (1990, Chapter 4)):

a. generation of random normal deviates;

b. transformation of normal deviates into test scores simulating the characteristics
of the population of test scores from which the parameters are drawn;
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c. transformation of test scores into predicted performance scores;

d. elimination of all performance scores below a cutting score on the AFQT score
which is expected to eliminate 30% of all generated entities.

a. Generation of Random Normal Deviates

A uniformly distributed random sequence of numbers ranging from 0 to 1, with an

approximate mean of 0.5 and a variance of 0.0833 was produced using a "purpose-built"

pseudorandom number generator. The choice of a random number generator routine was

based on evidence documenting efficient implementation and empirical tests of the

randomness of the program's output (Park and Miller, 1988). A clearly defined algorithm,

initial parameters and a recorded initial seed allow replication of the experiment. The

optimal multipliers for producing the number sequence were based on Fishman and

Moore's (1986) recomm. Aations. Thus, potential defects in the random number generator

that later generations may discern were minimized by careful selection of routines End

inputs. By today's standards, the investigators were unusually cautious.

The sequence of uniformly distributed random numbers was transformed into

a distribution of normal variables by calculating the expected mean and dividing by

expected values to give a mean of 0 and standard deviation of 1.0. The vector of scores for

each entity had the identity matrix as its expected covariance matrix, such that,

E(1/N(Xn'Xn)) = In. This formed a matrix of normal deviates, Xn, of order N by n,

where N was the number of entities (individuals) and n was the number of simulated

scores representing the full set of tests selected under all conditions. To generate

evaluation, MPP, variables in this study, one sample of N = 284 and n = 20 was generated

for each of twenty replications of the experiment. In generating assignment variables, the

value of n changed according to the condition. Only five or ten tests, depending on the

treatment, were used in obtaining the experimental LSEs.

b. Transformation of Random Normal Deviates to Test Scores

The generated test scores were required to have covariances with expectations equal

to those of the score population being sampled by the selected tests and be represented by

the comparable intercorrelations in Rt, i.e., E(1/N(Y'Y)) = Ra, or the cells of Rt

corresponding to the selected tests. A Grammian factor solution (Ft = AD1/2A', where A

and D were the eigenvectors and eigenvalues of the analysis s3riple predictor

intercorrelations, respectively), was used to transform the matrix Xn to a matrix of test
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scores (Y) for each of the experimental conditions. Given the transposed factor solution of
Ra, Ra = FaFa', Y was generated by Y = XnFa', where Fa had dimensions n by n and
Y 284 by n. Depending on the condition, n = 5 or 10.

c. Transformation of Test Scores to LSEs

For the set of m jobs (9 or 18) to be predicted by the n tests (5 or 10), the N by m
matrix z of predicted performance scores was generated with an expected universe
covariance matrix of E(1/N(z'z)). An n by m transformation matrix of beta weights,
W = Ra-V', was computed using the analysis sample data. This enabled the calculation
of Z = YW. The Z for each set of jobs represented the m predicted performance scores of
284 simulated individuals and corresponded to LSEs of criterion performance for use as
assignment variables.

A total of thirty 284 by m Z matrices were generated in accordance with the thirty
experimental conditions. These thirty Z matrices depicted the product or performance of
the five selection indices for two battery sizes (5 or 10 tests), against three samples of jobs
(the 9-job, "objective" criterion set, the 9-job, "subjective" criterion set, and the 18-job
set). Within each of the thirty cells of Table I twenty replications were executed. Thus,
the output from this phase was 600 separate Z matrices of 284 by in representing LSEs as
assignment variables with respect to every job for each artificial entity.

d. Selection of Entities by the AFQT Score

A selection ratio of 0.70 was accomplished by applying a truncation procedure to a
ranking of the AFQT scores of entities within each sample. Within each replication, the
entities with the lowest 30% of the AFQT scores were dropped from the analysis and not
considered for assignment. The AFQT score was calculated by the formula combining the
ASVAB tests Arithmetic Reasoning, Numerical Operations and Verbal Ability with equal
weights given to the standard scores of each test.

5. Obtaining Performance Predictions from Assignment Simulations

For each replication, two assignment procedures are performed using either
unmodified or modified LSE scores (the Z matrices) to capitalize on either HCE or PCE
entirely free from HCE (i.e., PAE), respectively. In the first, the unmodified LSEs, with
standard deviations equal to the validity, Rj for the jth job, are used as the assignment
variables. The presence of hierarchical classification effects meant that the resulting MPP
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standard scores reflect PCE with both HC and allocation effects. The second assignment

procedure uses modified LSE scores divided by Rj as assignment variables. This

standardizes the LSE scores to have equal expected means and variances across jobs and,

since the hierarchical layering effect is eliminated, reflects a pure measure of PAE (i.e.,

PCE completely free of HC effects). Any classification efficiency evident in these MPP

standard scores could be attributed to the allocation component of PCE.

In these two distinct assignment simulations, the modified and unmodified LSEs

based on 5 or 10 tests are inputs, as assignment variables, to an iterative primal algorithm

that is implemented by a circularized network optimization linear program. 8 In this

algorithm, quotas are met at each iteration while the allocation sum converges toward the

final optimal solution. At the final iteration the -.,bjective function, the MPP with respect to

assignment variables, is maximized.

For the 9 and 18 job conditions quotas of 22 and 11 are used, respectively, so that

all 198 selected entities are assigned. The final, optimal solution produces a set of

associations between an entity and the job to which it is assigned (i.e., a 198 by 2 matrix

with entity and job numbers in each row).

The MPP score for evaluation purposes is obtained from the assigned group in each

experimental simulation. This is computed from the allocation information in the job-entity

couplets given as the final solution. The 198 by 18 matrix of PP (LSE) scores is based on

one set of regression weights derived from the universe rather than the analysis sample.

These LSEs are generated using the full set of tventy predictors (the FLS equation) since

this provides the best estimate of an entity's performance. 9 The MPP standard score for a

given condition is obtained from the average of all the relevant evaluation FLS estimates

across jobs and entities according to the order of assignment. This procedure is performed

for each of the 600 cross-samples.

8 The optimal assignment procedure was executed from the source code for the "NETG" mathematical
programming system, published by Analysis, Research and Computation, Inc.

9 Twenty predictors, instead of the total 29 predictors available from Project A, are used to provide
estimates which hopefully reduce sampling error. The 9 predictors which were not included among the
"best" 10 predictors by the use of any of the 5 indices were the only predictors which could be dropped
from the set used to compute MPP without biasing the comparisons among indices. In general, the
use of fewer tests to compute MPP favored Max-PSE.

26



III. EXPECTED FINDINGS AND ACTUAL RESULTS

An MPP standard score represents the average of expected performance for entities

on the job to which each is assigned. The procedure described above produced two MPP

standard scores for each of the thirty cells in Table 1 providing the total output of the

system represented by that cell under "PCE" assignment and "PAE" assignment. Twenty

replications and two separate assignments resulted in 600 measures of PCE and 600

measures of PAE. The expected relative magnitude of the MPP standard scores is

expressed in the experimental statements or hypotheses I-VIl bek

I. Overall efficiency of test selection indices

a. The magnitude of the MPP scores produced by the indices in the PCE
assignment under each job condition and each battery condition will follow the
hierarchical sequence PDI > Hd > (Mod. PDI> = Mod. Hal) > Max-PSE.

b. The magnitude of the MPP scores produced by the indices in the PAE
assignment under each job condition and each battery condition will follow the
hierarchical sequence Mod. PD1 > Mod. Hd > (PDI> = Hd) > Max-PSE.

II. Classification efficient indices versus the selection efficient index

a. For the average of the PCE indices PDI and H combined across all conditions,
the MPP will be significantly greater than the MPP produced by Max-PSE
combined across all conditions.

b. The PCE MPP produced by PDI and Hd independently across all conditions
will be significantly greater than the MPP produced by Max-PSE over all
conditions. The relevant comparisons are between:

- id and Max-PSE;

- PD1 and Max-PSE.

c. For the average of the PAE indices Mod. PDI and Mod. Hd combined across
all conditions, the MPP will be significantly greater than the MPP produced by
Max-PSE combined across all conditions.

d. The PAE MPP produced by Mod. PD! and Mod. Hd independently across all
conditions will be significantly greater than the MPP produced by Max-PSE
over all conditions. The relevant comparisons are between:
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- Mod. PDI and Max-PSE;

- Mod. Hd and Max-PSE.

e. For each of the three job samples, the MPP (PCE and PAE) produced by PDI
and Hd separately will be significantly greater than the MPP produced by Max-
PSE for each job sample. The comparisons in hypothesis Ilb and d are
repeated for:

- the 9-job, "hands-on" criterion condition (9A);

- the 9-job, "no hands-on" criterion condition (9B);

- the 18 job, combined criterion condition.

III. Hd versus PDI for PCE and PAE

a. The PCE (measured as MPP) produced by PDI under all job and battery
conditions will be significantly greater than that produced by Hd.

b. The PAE (measured as MPP) produced by Mod. PDI under all job and battery
conditions will be significantly greater than that produced by Mod. Hd.

IV. Modified versus unmodified indices

a. The PAE (measured as MPP) produced by Mod. PDI under all job and battery
conditions will be significantly greater than that produced by PDI.

b. The PAE (measured as MPP) produced by Mod. Hd under all job and battery
conditions will be significantly greater than that produced by lid.

c. The MPPs produced by the modified indices in the PAE-based assignment will
be significantly greater than those produced in the PCE-based assignment.

V. Test battery size, MPP and differences in index efficiency

a. The MPP scores produced by the selection indices in the 10-test battery
conditions will be greater than the MPPs in the 5-test battery conditions.

b. There will be greater sensitivity to differences in index efficiency when a 5-test
battery is used than when a 10-test battery is used.

VI. Number of jobs and MPP

a. The PCE and PAE (measured as MPP) produced by the selection indices in the
18-job condition will be significantly greater than those in the 9-job condition.

b. The increase in the PCE and PAE (measured as MPP) between 9 and 18 jobs
will approach but be smaller than the ratio representing the increase suggested
by Brogden's (1959) model.
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V I. Source of criterion, MPP and index efficiency

a. There will be greater sensitivity to differences in index efficiency under job
sample 9A than under job sample 9B.

b. The MPP for PCE and PAE produced by the indices when hands-on criterion
measures are used (job sample 9A) will be significantly greater than the MPP
produced by no hands-on measures (job sample 9B).

The 600 MPP scores with and without hierarchical classification (the "PCE

simulation" and the "PAE simulation"), can be organized under a three-way, 5 x 2 x 3

analysis of variance (ANOVA) design, as shown in Table 2. This design encompasses

repeated measures (i.e., 20 replications) under all factors.

Table 2. Three-Factor Analysis of Variance Design

Factor A: Selection Index

Level 1: PDI
Level 2: Hd
Level 3: Mod. PDI
Level 4: Mod. Hd

Level 5: Max-PSE

Factor B: Test Battery Size

Level 1: 5
Level 2: 10

Factor C: Job Sample

Level 1: 9 jobs/hands-on criteria (9A)
Level 2: 9 jobs/no hands-on criteria (9B)
Level 3:18 jobs/mixed criteria

A null hypothesis of no difference between the treatment means was tested initially

at the .01 confidence level to establish significant effects. Given the existence of a

significant F-test of treatment means, more specific comparisons between means relevant to

expected results I-VII were assessed. This involved a series of post hoc Scheff6 multiple

comparisons at the .05 level as a screening phase and more specific t-tests of pairwise

comparisons between relevant MPP scores at the .01 level of significance.
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A. TEST SELECTION RESULTS

The test selection procedure produced 30 batteries of five or ten tests. Table 3

below lists the tests and the conditions under which they were selected (i.e., the cells of

Table 1).

Table 3. Test Selection Results By Selection Index,
Test Battery Size, and Job Sample

SELECTIO11 NO. JOB
a

INDEX TESTS SAMPLE TESTS (IN OER SELECTED)b

Po! 5 9A MACH CS TECH GS AR
5 98 AS NO PSYM SPAT IlK
5 18 CS AS ViE K PSYI
10 9A MACH CS TECH GS AR AUTO DEPN NO COND MC
10 98 AS NO PSYh SPAT NK CS VE SRAC PSER COi8
10 18 Cs AS VE HK PSYM SPAT NO DEPN COND MACH

I4d 5 9A IACH CS TECH GS AR
5 98 AS NO SPAT PSY4 MK
5 18 CS AS VE SPAT MK

10 9A MACH CS TECH GS AR AUTO COND DEPN NO KC
10 98 AS NO SPAT PSY MK VE CS SRAC DEPH GS

10 18 CS AS VE SPAT M4K PSY NO GS DEPN COND
"W. PD1 5 9A HACH TECH CCi4B AUTO DEPN

5 98 DEPN PSER SRAC COND NO
5 18 MACH DEPN PSER TECH SRAC

10 9A MACH TECH COCB AUTO DEPH COND CS AR GS NO
10 98 DEPN PSER SRAC COND NO MK PSYI SPAT AS CS

10 18 HACH DEPM PSER TECH SRAC NO AS PSYh CS SPAT
MCD. lid 5 9A MACH COMB TECH AUTO CS

5 98 DEPN VE SPAT MK NO
5 18 MACH CS SPAT MK GS
10 9A MACH COMB TECH AUTO CS NO MC AR GS DEPN
10 98 DEPN VE SPAT M4K NO PSYN AS CS SRAC COND
10 18 MACH CS SPAT M4K GS NO PSYh AS DEPH .TECH

MAX-PSiE 5 9A AR SPAT El HACH VE
5 9B AR GS SPAT CS ViE
5 18 AR SPAT GS CS AS

10 9A AR SPAT El MACH VE DEPN TECH CS CPAC AUTO

10 98 AR GS SPAT CS VE PSYM AS HIK PSER DEPN
10 18 AR SPAT GS CS AS DEPN CPAC PSYN NO M4K

a 9A: 9 jobs, hands-on criteria

98: 9 jobs, without hands-on criteria
18: 18 jobs, mixed criteria

b Full test names are given in Appendix B.
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The output from each test selection procedure was essentially a factor solution of

the complete set of 29 predictors, with the order of factor presentation reflecting the

sequence in which tests are selected (see Appendix F, section II). The key finding at this

stage of the analysis is that different sets of predictors were selected using different

selection indices. Across all conditions, a total of 20 tests were selected (see Appendix F,

Table F-4 for FLS battery). Identical test batteries resulted from the PDI and Hd methods

for three of the possible six combinations of battery size and job sample: 5/9A; 10/9A; and

5/9B. All other 27 test batteries were distinct.

Examination of the tests chosen by the PCE-oriented indices and Max-PSE

supports the expectation that more tests highly loaded with general cognitive ability (e.g.,

Arithmetic Reasoning and General Science) would be selected by Max-PSE than by either

the PCE or PAE indices. This provides preliminary but inconclusive support for the use of

a specialized index to maximize CE. Also of interest is that a sizeable number of tests

selected come from the experimental test battery rather than from the existing ASVAB. In

addition, a difference between the modified and unmodified indices is apparent, suggesting

that it may indeed be useful to distinguish between hierarchical classification (HC) and

allocation effects as different sources of CE. However, analysis of assignment simulation

results is required to estimate the impact of these different test batteries on PCE and PAE.

B. STATISTICAL ANALYSES OF SIMULATION RESULTS

All statistical analyses were performed on the MPP standard scores resulting from

20 replications of 30 experimental conditions. The overall F test (described below) was

based on the results for the full 20 replications of each condition. Table 4 shows the
average MPP for each assignment strategy reflecting each experimental condition, i.e., the

MPP standard scores averaged across the 20 replications. The statistical tests for expected

findings I-VII provide the basis for interpreting the aggregated figures in Table 4. The

mean values in Table 4 that retain credibility after application of the statistical tests provide

the basis for the utility analysis.

1. Results for Repeated Measures Analysis of Variance

The test batteries resulting from PDI and Hd under three of the conditions (see

Table 2) represented essentially the same assignment treatment and so could not be treated

as different conditions in the statistical analysis. A one-way ANOVA of the PDI and id
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Table 4. Average MPP Standard Scores for 2 Assignment Strategies
and 30 Conditions

Assignment With Hierarchical Classification ("PCE Assignment")

181 B2

A1  A2 A3 A4 A5 Al A2 A3  A4 A5

C1 .38511 .38511 .35207 .37970 .31532 .44369 .44369 .44391 .45271 .42247

C2  .39249 .39249 .33376 .35545 .35106 .47398 .46894 .46813 .46782 .45675

C3  .39215 .40584 .36408 .40051 .39691 .49026 .46663 .48659 .50766 .48257

Assignment Without Hierarchical Classification ("PAE Assignment")

B1 B2

A1  A2  A3 A4 A5  Al A2  A3  A4 A5

C1 .37328 .37328 .33710 .35260 .29799 .43151 .43151 .43430 .44036 .40726

C2 .38851 .38851 .32601 .35351 .31218 .45191 .45691 .45538 .45578 .44451

03 .35962 .36347 .34400 .37341 .36748 .47358 .44256 .46681 .48925 .46180

conditions which did differ was not significant at p = .01 (F1 ,19 = 7.60). Given that PDI

and Hd appeared to be interchangeable even in the conditions where they could be

distinguished, levels 1 and 2 of factor A were collapsed into one level to represent a single

classification efficient index. Consequently, a 4 x 2 x 3 analysis of main effects and

interactions was initially used to analyze the overall differences between population means

under each assignment. Tables 5 and 6 below display the results of these F tests.

The significant main effects of the three factors under both strategies allowed the

null hypothesis of no difference between population means to be rejected at a high level of

confidence (above .001). Significant interactions warn that the results of further multiple

comparisons and t-tests of combined means cannot be interpreted simply as caused by the

particular factor being evaluated. Hence, three levels of hypothesis testing were

undertaken: (1) multiple comparisons using the Scheff6 S method at p = .05, (2) t-tests

between means combined over two or more relevant cells of the results matrix at p = .01,

and (3) t-tests between two individual cells of the results matrix at p = .01. The results of

these tests for expected findings or hypotheses I-VII are described below.

32



Table 5. Repeated Measures ANOVA of MPP Standard Scores:
"PCE Assignment" (N = 480)

Source of variation df MS teNt MSerm P . P

Between Subjects 1,19
Subjects within grous

Within Subjects
A (Setection Methods) 3 0.019 82.15 <.001

A X subjects within groups 57 0.000231
B (Test Battery Size) 1 1.115 2473.95 <.001

B X subjects within groups 19 0.000451
C (Job Saapte) 2 0.672 73.96 <.001

C X subjects within groups 38 0.009086

AB 3 0.010 59.21 <.001
AB X subjects within groups 57 0.000169

AC 6 0.007 24.47 <.001
AC X subjects within groups 114 0.000286

BC 2 0.007 46.53 <.001
BC X subjects within groups 38 0.000150

ABC 6 0.002 -16.14 <.001
ABC X subjects within groups 114 0.000124

Note: Due to rounding error, the F shown above is not exactly equal to the ratio of MStreatment to MSerror.

Table 6. Repeated Measures ANOVA of MPP Standard Scores
"PAE Assignment" (N = 480)

Source of variation df HS tmatmnt MSerrW F p

Between Subjects 1,19
Subjects within groups

Within Subjects
A (Setection Methods) 3 0.025 105.50 <.001

A X subjects within groups 57 0.000237
B (Test Battery Size) 1 1.231 5083.84 <.001

B X subjects within groups 19 0.000242
C (Job SampLe) 2 0.039 49.92 <.001

C X subjects within groups 38 0.000781
AB 3 0.011 60.01 <.001
AB X subjects within groups 57 0.000183

AC 6 0.008 19.82 <.001
AC X subjects within groups 114 0.000401

BC 2 0.005 26.84 <.001
BC X subjects within groups 38 0.000186

ABC 6 0.002 14.20 <.001
ABC X subjects within groups 114 0.000141
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2. Results for Hypothesis I: Overall Index Efficiency

The MPP standard scores in Table 4 formed the basis for comparisons between

means. In the "PCE assignment" strategy, examination of absolute differences in

magnitude between selection methods ignored the distinction between PDI and Hd,

although where they differed PDI seemed marginally superior.10 The expected increase in

magnitude for the CE index (the average of PDI and I-Ld) over Max-PSE was upheld in all

conditions except for 10/18 (tests/jobs). When considered as separate methods, a reversal

in the expected direction occurred with PDI in the 5/18 condition and with Hd in the 10/18

condition.

In the "PAE assignment" strategy, the important comparison was between Mod.

PDI and Mod. Hd on the one hand and Max-PSE on the other. Both Mod. PDI and Mod.

Hd produced greater MPP than Max-PSE in all conditions except for the 5/18 condition in

which there was a reversal with Mod. PDI.

There appear to be no consistent increases in magnitude to support the expectation

that the modified PDI or Hd indices produce greater MPP in a pure allocation efficient

assignment strategy ("PAE assignment") than the unmodified PDI and Hd. However,

without evaluating the statistical significance of these observed differences, no conclusions

are justified at this stage.

3. Results for Hypothesis II: Classification Efficient Indices versus the
Selection Efficient Index (Max-PSE)

The initial comparison between selection methods treated the average of PDI and Hd

,conditions as representing one classification efficient (CE) index. In the "PCE assignment"

case, a t-test of the differences between CE and Max-PSE over all conditions was

significant at the .01 level (t19 = 11.321), thus confirming the observed difference in

magnitude. The means for PDI and Hd in the three conditions where they did differ

(10/9B; 5/18; and 10/18), were compared with Max-PSE. This showed that the PDI mean

at the 10/9B and 10/18 conditions was significantly different from the Max-PSE mean of

the same conditions, but that the same could not be said for the Hd means (see Table 7).

10 Although the null hypothesis could not be rejected at the selected level of significance (p < .05), the

overall PDI results were superior to Hd, and particularly so for the replications representing the 9-job
sample with hands-on criteria, there was a reversal in the single condition where 10 tests were selected
and assignments were made to 18 jobs.

34



However, t-tests between PDI and Max-PSE ap Hd and Max-PSE in the 18 job conditions

were not significant (see Table 7).

Table 7. t Values for Comparisons between PDI, Hd, and Max-PSE:
"PCE Assignment"

Comparison B2/C2 ,3  C3/B1i2

PDI v Max-PSE 4.4150* - 0.383

Hd v Max-PSE 0.665 0.921

Note: PDI and Hd were different only in conditions B2C2, B1 C2 and 82C3
Signficant at .01 level

In the "PCE" analysis, then, a combined CE index is superior to Max-PSE, but the

consistency of this difference weakens when PDI and lid are compared separately with

Max-PSE. It is possible that the inherent weakness of the 10 test and 9B job conditions for

detecting methodological differences [as predicted by hypotheses V(b) and VII] is

responsible for these mixed results.

Some support for this position is found in the "PAE assignment" case where Mod.

PDI and Mod. Hd could both be compared to Max-PSE means over all conditions. A

Schefff test indicated that significant differences existed between the three groups at the .05

level. In addition, t-tests between Mod. PDI and Max-PSE, and Mod. Hd and Max-PSE

were significant at p = .01 (t = 5.437 and t = 13.045, respectively).

The superiority of the classification efficient methods over Max-PSE was also

expected to carry across all possible job and test combinations [hypothesis 11(e)]. A series

of single factor ANOVAs was conducted examining the simple main effects of factor A

(selection methods) for different combinations of B (test battery size) and C (job sample).

The modified indices were dropped from factor A in the "PCE assignment," leaving an

analysis of the simple effects of two levels of factor A (the combined PDI/Hd and Max-

PSE). Similarly, the unmodified indices were dropped in the "PAE assignment" leaving

three levels of A (Mod. PDI, Mod. HId and Max-PSE). t-tests were also carried out,

comparing the combination of PDI and Hd with Max-PSE in the "PCE assignment," and

Mod. PDI and Mod. Hd each with Max-PSE in the "PAE assignment." The results of these

analyses are summarized in Tables 8 and 9, respectively.
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Table 8: Simple Main Effects and t Values of Selection Methods
PDI/Hd and Max-PSE: "PCE Assignment"

Source of variation F1,19 ti P

A at B1 166.49 -12.903 <.001

A at B2 22.47 -4.740 <.001

A at C1 159.37 -12.624 <.001

A at C2 51.75 -7.194 <.001

A at C3  0.06 0.254 n.s.

A at B1 ,C1  164.41 -12.822 <.001

A at B1,C2 57.25 7.566 <.001

A at B1 ,C3  0.17 -0.410 n.s.

A at B2,C1  41.28 -6.425 <.001

A at B2,C2 17.29 -4.158 <.001

A at B2,C3 1.03 1.013 n.s.

Note: n.s. signifies not significant at .01 level.

Table 9. Simple Main Effects and t Values oi Selection Methods
Mod. PDI, Mod. Hd Max-PSE: "PAE Assignment"

Source of variation F2,38 a  tI9b p t 19c p

AatB1 65.69 -3.221 0.01 -11.137 <.001

A at B2  42.66 -5.486 <.001 -9.179 <.001

AatC 1  135.60 -11.917 <.001 15.801 <.001

A at C2  17.60 -2.785 0.01 -5.930 <.001

A at C3 19.62 2.200 n.s. -3.978 <.001

A at B1 ,C1  79.64 -8.770 <.001 -12 245 <.001

A at B1,C2  20.44 -2.102 n.s. -6.281 <.001

A at B1 ,C3  18.25 4.560 <.001 1.153 n.s.

A at B2,C1 62.97 -8.609 <.001 -10.539 <.001

A at B2 ,C2  4.72 -2.612 n.s. -2.707 n.s.

A at B2,C3  16.24 -0.977 n.s. -5.350 4.001

Note: n.s. signifies not significant at .01 level.
a The numerator of the F ratio is the MS of A at each level of B and C; the denominator is

MSA x subj. within groups.
b Comparison between Mod. PDI and Max-PSE.
c Comparison between Mod. Hd and Max-PSE.
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In conclusion, the composite CE index, created from PDI and Hd in the PCE

condition, was found to be significantly greater than Max-PSE under all treatments

excluding those with 18 jobs. In "PAE assignment," the superiority of Mod. PDI and

Mod. Hd was most consistently shown for job sample 9A, both the 5- and 10-test

conditions and any combinations of these three levels of factors B and C.

4. Results for Hypothesis III: Hd versus PDI

The distinction between Hd and PDI under "PCE assignment" could only be

examined by statistical methods for three of the six possible combinations of job/test

conditions: 10/9B; 5/18; and 10/18. In the other three conditions, any expected differences

in the test batteries produced by Hd and PDI were disproven at the test selection stage.

Further confirmation of the earlier non-significant F test for these two levels of factor A

was given by a t-test between the PDI and Hd means at the possible conditions

(t19 = -2.757, p = .01).

The distinction between Mod. PDI and Mod. Hd in the "PAE strategy" could be

made for all relevant cells. A one-way ANOVA on levels 3 and 4 of factor A showed a

significant effect at p = .01 (F1,19 = 43.70). Although this implies a rejection of the null

hypothesis of no difference, examination of the MPP standard scores in Table 4 shows that

Mod. Hd is consistently higher than Mod. PDI in direct contrast to the predicted direction.

The expected increase as a result of using PDI in place of Hd is not supported among the

modified indices.

The implication of these results, in combination with the finding reported for

hypothesis III, is that either PDI or Hd may be used with high confidence that they are

superior to Max-PSE.I I

5. Results for Hypothesis IV: Modified versus Unmodified Indices

Hypotheses IV (a)-(c) predicted some benefit from the use of indices modified to

eliminate hierarchical classification efficiency (HCE) in the pure allocation assignment

strategy. Using the "PAE assignment" data, a one-way ANOVA for the PDI and Mod.

PDI levels of factor A was carried out. This showed a significant effect of the index

treatment at the .01 level (F1 ,19 = 85.34). A further t-test between the means over all

1 The high statistical significance of this conclusion is obtained despite the reversal for one condition (10

tests and 18 jobs).
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conditions was also significant (t19 = -9.238, p = .01). However, a similar ANOVA for

the Hd and Mod. Hd levels of A in the same data was not significant at .05 (F1 ,19 = 1.56).

These results provide no consistent evidence in support of the hypothesis that the proposed

modification to selection methods would increase classification efficiency in conditions

with no HCE.

6. Results for Hypothesis V: Test Battery Size, MPP and Index Efficiency

Hypothesis V(a) predicted that the larger the size of the test battery the higher the

MPP resulting from assignment. An examination of Table 4 indicates an average increase

of 28% in MPP from the 5-test to the 10-test conditions in the "PCE assignment," and of

24% in the "PAE assignment." The difference between the total group of 5-test means and

the total group of 10-test means was also statistic..lly significant under both assignment

strategies at a confidence level higher than .001 (t19 = 49.739 and t19 = 67.76 for PCE and

PAE, respectively). The expected increase in MPP is confirmed by these results.

11egarding the relative efficiency of the selection methods under each test battery,

hypothesis V(b) predicted that greater index efficiency would be detected with 5 tests than

with 10 tests. This was assessed first by a comparison of the simple main effects of factor

A (at four levels) for the two levels of factor B. Referring to Table 10, it is evident that the

main effect of factor A, holding C constant, is larger with 5 tests than with 10 tests in both

assignment cases. This suggests that the contribution of test selection method variance is

greater under 5 tests than under 10 tests. If this is the case, then the smaller battery allows

greater differentiation between methods.

This is overshadowed, however, by the relatively more important finding that

differences between methods are significant for both sets of batteries. If the larger battery

is assumed to be a less sensitive "test-bed" for exhibiting methodological differences, then

the significant finding takes on additional importance. It could even be speculated that the

addition of more Project A experimental tests to the battery, beyond the first five, was

strengthening the general cognitive ability component since most of the experimental

predictors were designed to maximize predictive validity. The display of methodological

differences, despite the weak test-bed, enhances the significant results reported for

hypothesis II.
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Table 10. Simple Main Effects of the Selection Methods by Battery Size

Source of variation . df MS I F p

PCE assignm ent . . ... .............

A at B1  3,57 0.0241 106.11 <.001

A at B2  3,57 0.0049 28.56 <.001

PAE assignment ... .....

A at B1  3,57 0.0295 117.46 <.001

A at B2  3,57 0.0058 36.66 <.001

7. Results of Hypothesis VI: Number of Jobs and MPP

Brogden's (1959) model of allocation predicted an increase in the allocation average

as the number of jobs increased. Evidence of such an increase was observed here in both

assignment situations. In "PCE assignment," an average increase of 10% occurred from

job sample 9A to 18 jobs and 6% from job sample 9B to 18 jobs. A Scheff6 comparison of

the three job sample means across all conditions showed that all the means were

significantly different from one another at p = .05. More refined t-tests of differences

between each mean were all significant at p = .01 (see Table 11).

In "PAE assignment," the observed increase averaged 7% from job sample 9A to

18 jobs and 5% from job sample 9B to 18 jobs. A similar comparison as before across the

three job samples also showed significant differences between both the 9 job and the 18 job

categories at p = .01 (see Table 11).

Table 11. t-Tests Between Job Samples 9A, 9B, and 18

Comparison df t .

PCE assignment

9A v 9B 38 3.783 0.001

9A v 18 38 11.902 <.001

9Bv 18 38 8.119 <.001

PAE assignment

9A v 9B 38 4.466 <.001

9A v 18 38 9.263 <.001

9B v 18 38 4.797 <.001

39



As expected under hypothesis VI(b), the percentage increase fell below that of 26%

predicted by Brogden (1959, Table 2, p. 190)12 when the number of jobs was doubled

from 7 to 14. Several factors explain this difference. Firstly, in Table 2 Brogden's model

did not consider the effects of selection, which truncates the applicant population and

restricts the range of the assigned population's ability. The potential gain from an increased

pool of predicted performance scores from which to assign, therefore, is lessened.

Secondly, Brogden assumes that the dimensionality of the joint predictor-criterion

space is equal to the number of jobs (or job families) represented by test composites. It is

doubtful that the dimensionality of this space is doubled when going from 9 to 18 jobs

using the Project A data. Brogden's model does provide for an increase in PCE when

either the multiple correlation coefficient (R) is increased and/or the LSE intercorrelations

(r) are decreased. One would not expect to modify either R or r, other than through

sampling error, when jobs are doubled in number, without adding job families, as in this

study. An increase in the number of job families through the shredding of existing

families, or by reconstituting families in accordance with differential assignment theory,

would increase R and decrease r, and thus provide a greater gain in PCE than expected

here.

8. Results of Hypothesis VII: Criterion Measure, MPP and Index
Efficiency

The expected benefit from using the criteria containing hands-on performance

measures over criteria without hands-on measures was tested by a comparison of the two

9-job samples. Given that the null hypothesis of no difference between the two 9-job

samples means was not di -ectly assessed in the overall F test, a further ANOVA was

performed including only levels 1 and 2 of factor C with factors A and B. The main effect

of factor C was significant at p = .01 (F1, 3 8) =7 3.96) and a t-test of the two sets of means

was significant at p = .01 (t38 = 3.783 and t38 = 4.466 for PCE and PAE assignment,

respectively). Although it could be concluded that these two 9-job samples, which differed

only in the type of criterion they employed, were significantly different, there was no

12 This table provides expected .nterion standard scores resulting from making optimal assignments to
sets of jobs ranging from 2 to 15, when assignments are made on the basis of full knowledge of these
scores. These table entries are readily converted to MPP standard scores for numbers of jobs falling
within this range. The effects of doubling 7 jobs can be directly determined from Brogden's table when
his assumptions are met, but the effect of doubling 9 jobs can only be inferred by extrapolation.
Obviously, doubling 9 jobs would have more effect than doubling 7 jobs.
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evidence that this difference was in favor of the 9A sample. The MPP scores for 9A were

not consistently higher than the MPP scores for 9B in either assignment case.

More importantly, however, the 9A sample provided a greater distinction between

the MPP provided by tests selected by CE as contrasted to SE indices. Such results show

that the dimensionality of the joint predictor-criterion space is greater when hands-on

criteria are used instead of only job knowledge tests. Referring back to Tables 8 and 9 in

this chapter, the F ratio and corresponding t value were larger for the simple effects of A at

C1 job sample 9A) than at C2 (job sample 9B) in the "PCE assignment" (Table 8).

Furthermore, at least one of the conditions involving the 9B jobs in the "PAE assignment"
(Table 9) could detect no significant effects of the indices. It would seem that the relative

efficiency of the different test selection methods was better reflected when hands-on

criterion measures were employed. However, at least some of the greater sensitivity
provided by the 9A data, as compared to the 9B data, is due to the generally larger Ns for

this set of jobs. The two average Ns are 448.8 and 326.3, respectively. More importantly,
there are three validation samples in 9B smaller than the smallest in 9A.

This result supports the conjecture that the performance of a selection index

designed to measure differential validity should be better under a criterion designed to

measure more technical job components. This point is emphasized in the study because of

the early decision to use the single core technical proficiency (CTP) criterion rather than the
composite criterion. The nature of the other MOS-specific CTP measures is such that they
would be expected to be complemented and therefore enhanced by the effect of an added

job criterion component composed of hands-on measurements of performance.

The increased sensitivity of the 9A job sample raises the possibility that a more

accurate test of the performance of PCE and PAE indices could be carried out on a job
sample selected to better differentiate across jobs and predicted performance scores. The

19 Project A MOS were selected as broadly representative of the Army's 258 MOS, with
particular focus on the combat arms. The state of the art for development of classification

efficient measures has not yet progressed to where the two g measures (cognitive g and
general adjustment g) can be effectively supplemented in the prediction of performance in
the combat arms. Thus, a set of jobs with greater representation of technical specialties

would have provided a more efficient test-bed for evaluating the effectiveness of alternative

test selection methods for increasing the classification efficiency of the battery.
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C. ESTIMATING THE PRACTICAL SIGNIFICANCE OF CHANGES
IN MPP

The issue of practical significance questions whether the observed gains in MPP

were sufficient to be of practical importance for the use of CE methods of test selection in

relevant situations. A translation of the increments in MPP into an estimate of real value

pro .ides a better indication of the potential for improving the CE of the operational system.

Nord and Schmitz' (1989) simulation of assignment using the Army's Enlisted Personnel

Assignment System (EPAS) evaluated the economic benefits of improved MPP across

alternative assignment strategies. Their estimates of the costs and benefits of performance

in dollar terms provide a basis for extrapolating utility estimates from the results of this

study.

In the context of Nord and Schmitz' simulation, a full least squares (FLS) optimal

assignment, where individuals were selected and classified to maximize their predicted

performance and no quality constraints were imposed, provided an improvement of

0.12 MPP standard scores over the EPAS system, where constraints were enforced and the

objective function was to maximize the AA score in the assigned job. The gross economic

value of this gain, without considering costs (e.g., recruiting, training, attrition), was

estimated to be approximately $200 million for one year (Table 3.19, p. 47).

In the current study, the performance gain from using PCE-oriented test selection

methods as opposed to the PSE-oriented method, averaged 0.04 standard deviations over

all comparisons, reaching as far as 0.07 apd 0.08 in the 5-test conditions. A dollar value of

$100 million before costs--half that estimated for a gain of 0.12 MPP standard scores by

Nord and Schmitz--describes the range of improvement in PCE suggested by utilization of

either PDI or Hd instead of Max-PSE to select 4 or 5 tests for inclusion in a future

classification battery. 13 This degree of improvement from a relatively cost-free

modification of assignment variables provides a viable alternative to increasing selection

standards.

13 It should be noted that Max.PSE is a psychometrically superior test selection index as compared to
indices utilized in recent test develL,,ment studies in which the objective was the improvement of a
classification battery. Max-PSE is a difficult competitor to beat. From this point of view the
estimated gain obtainable from the use of either PDI or Hd is conservative. However, this estimate is
also based on the assumption that the operational selection and classification system used to implement
the newly selected test battery will include optimal assignment to jobs, over the past decade this would
have been a difficult assumption to fulfill. The implementation of such an ideal system may become
more feasible as the Army becomes smaller--a possible consequence of the cold war's end.
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IV. OPERATIONAL IMPLICATIONS

A. IMPLEMENTING CLASSIFICATION EFFICIENT TEST SELECTION

The observed gains in MPP from the use. of classification efficient test selection

methods translate into millions of dollars of increased productivity. The findings of this

study provide strong support for a proposed operational change to the present Army system

discussed by Zeidner and Johnson (1989b, Chapters 5 and 6), namely, supplementing the

existing ASVAB tests with new predictors selected from Project A experimental measures

by a test selection index which maximizes PCE rather than predictive validity.

In a previous report, Johnson and Zeidner (1990) reviewed the psychometric

principles and the somewhat limited empirical evidence justifying classification efficient

methodologies. The present study provides further empirical proof for several aspects of

the theoretical foundations of classification efficiency. It does so by way of a rigorously

designed simulation of selection and assignment and with the benefit of a systematically

derived and unbiased estimate of parameters for the youth population.

The PCE of an operational battery can be improved by increasing the classification

efficiency of the tests in the experimental test pool and/or by augmenting the test battery

with a set of tests chosen to maximize classification efficiency. The former approach

implies a costly development of new tests whose content, unlike the Project A experimental

test pool, was preselected or designed to maximize classification efficiency. This task is

beyond the research described here. An entire reconstitution of the ASVAB, while not

ruled out by the results of this study, is highly unlikely to occur as the result of research

bearing on a single service. It is much more likely that th. other services would agree to

the deletion of one or two tests showing poor classification efficiency, and their

replacement by one or two tests with high classification efficiency. It is even more likely

that the Army would be permitted to use a two-tiered system in which a supplemental

battery for classification purposes is used. The significant gains in MPP under PDI or Hd

in the ten-test cases, where differentiation between methods seemed least likely, simply

magnifies the certainty that the superiority of the PCE-oriented methods is real.
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For the Army, the most promising area for immediate operational change is the
augmentation of the 10 ASVAB tests with one or two tests, most likely from the Project A
test pool, which maximize PCE. This would require the application of a selection method
such as Hd or PDI as described in this experiment. The present results indicate that either
would provide a reliable estimate of a test's classification efficiency although we would
recommend the use of PDI unless classification efficient factor measures are being sought.

The strong effects observed under the five-test conditions, with gains of 22 percent

using hands-on measures of performance, provide great promise for the addition of one or
more classification efficient tests to the existing battery. Such a change in the Army's

current aptitude areas could be expected to provide over 100 million dollars gain in
productivity. These figures are of course based on a comparison with a test selection

strategy using the index Max-PSE which, by maximizing the predictive validity of the
selected tests, provides a test battery which is much more efficient than the current system
of AA composites of ASVAB tests selected by a combination of political considerations and
empirical approaches that focused on one composite at a time. Although this study does
not pretend to provide a simulation of the present Army system, strong evidence is
provided for maximizing a test battery's classification efficiency rather than its predictive
validity when the battery is to be used for personnel classification. We would expect a gain
of about 40 percent in MPP with the use of FLS composites comprised of classification
efficient tests over the present ASVAB FLS composites.

B. INCREASING THE NUMBER OF FLS COMPOSITES AND JOB
FAMILIES

Zeidner and Johnson (1989b, Chapter 5) predicted that the PCE of a fixed
operational battery can be improved by increasing the number of job families with
associated test composites. The present study demonstrates gains of six to ten percent in
MPP when the number of jobs is doubled from nine to eighteen. A maximally efficient
increase in the number of Army job families and associated predictor composites would be
expected to result in between 20 and 40 AAs and associated job families.14 However, the

14 Psychometric theory supports the use of as many job families as can be supported by the availaalk
validity data when maximization of PCE is the objective. We believe that up to 40 MOS clusters (job
families) can be supported by adequate validity information on the existing ASVAB tests ("subtests").
Whether the gain in PCE provided by 40 job families, as compared to 20, is sufficiently large to
justify the administration problems inherent in having the additional 20 job families should be
determined by a model sampling experiment.
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results imply that an initial increase from the current 9 to between 15 and 18 should provide

much of this possible increase while being less disruptive to the existing operational

system. A two-tiered system of AAs, in which a smaller set is used for counseling and

administrative purposes, while a larger set is used within the computer for initial

assignment, should be considered in conjunction with a larger, maximally efficient number

of AAs.

The findings favoring Hd or PDI over Max-PSE obtained in the sets of nine jobs

did not extend to the conditions based on sets of eighteen jobs. While MPP is shown to be

greater for 18 jobs than for 9 jobs, the superiority of Hd or PDI over Max-PSE has been

blurred in the larger set of jobs. This blurring can be understood as a rational consequence

of increasing the importance of the common factor space by doubling the number of
variables somewhat evenly across the joint predictor-criterion space without more than a

trivial increase in the size of this space (i.e., without increasing the dimensionality). It is

understandable that MPP would be increased by the use of more assignment variables

(AAs) even though these additional variables represent distinct vectors within the same

space. However, it becomes less important that the predictor selected to define these AAs

be identified by Hd or PDI instead of Max-PSE.

The results of this study provide preliminary support for the initial phase of
research on alternative sets of job families beginning with graduated shredding of the job

families (Zeidner and Johnson, 1989b). A further study, currently being conducted, will

investigate the effect of creating a greater number of job families featuring a classification

efficient job clustering method. By way of a simulation procedure similar to that of this

study, it is anticipated that they will demonstrate conclusively performance gains resulting

from a job family structure with inherently more classification efficiency.

C. CAPITALIZING ON HIERARCHICAL CLASSIFICATION

EFFICIENCY

The Army's current assignment strategy is deficient both in allocation efficiency

(AE) and hierarchical classification efficiency (HCE). The unit-weighted, three-test AA

composites lack the differential validity which could be provided by the use of FLS

composites, and hence limit the AE of the overall process. The present study provides the

FLS composites, the most efficient estimates of performance, as the assignment variables,

but provides two separate sets of assignment conditions, one with and one without the

capacity of providing HCE in the assignment process, focusing on the effects of increasing

45



HCE. The extent of the gains achieved from capitalizing on HCE (by permitting the FLS

composites to remain weighted by their validities) was examined against the effect of a pure

allocation efficient process with equal means and standard deviations (and hence no

weighting of assignment variables by validities) across jobs.

An overall gain of two percent resulted from the assignment strategy permitting

capitalizing on HCE ("PCE assignment") over classification in the absence of HCE

(allocation or "PAE assignment"). As in the four-variable model used to demonstrate this

effect in Johnson and Zeidner (1990, Appendix 1B), there is some evidence that the

combined effects of HC and allocation efficiency increase overall performance. The extent

of this difference, however, is no greater than would be achieved by the use of a

classification efficient index such as PDI or Hd in the pure allocation case. The benefits of

this marginal increase in MPP must be considered against the assumed cost involved in

transforming an existing assignment system to one which capitalizes on HC.15 Hence, on

the basis of the present results, modifications to the Army's assignment strategy to

encompass HC cannot be given a high priority. In practical terms, more significant gains

can be realized from either the use of a PCE-based method of test selection or the use of

more AAs.

D. LIMITATIONS AND FUTURE RESEARCH

One crucial factor which may have influenced the results of this research is the

nature of the data on which it was based. The Project A data base in general provided an

unequalled opportunity to empirically examine issues and theories related to classification

which previously would not have been possible. The ideas of Horst and Brogden had

remained mostly theoretical and the study by Harris (1967) was conducted using fewer

experimental variables than was made possible by the Project A data.

Given the primary hypothesis of this study, however, the emphasis on predictive

validity during the development of the experimental Project A predictors may have inhibited

the precise effect being analyzed. This suggests that a more sound examination of

15 An individual in a key posiuon for influencing the future direction of ASVAB development iomrmented
as follows:

Capitalization on HCE implies layering assignments (assigning all of the most able
applicants to the job with the greatest combination of importance and test validity, all of
the next most able applicants to the job with the next greatest importance/validity, etc.).
Extreme homogeneity among accessions to each job might actually be detrimental as
suggested above.
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classification efficient test selection methodology would be based on a pool of tests which

themselves were constructed to maximize differential validity. In effect, a classification

efficient developmental approach should begin with an effort to assemble an experimental

battery containing measures that can be expected to expand the joint predictor-criterion

space.

Similarly, the selection of the 19 Project A MOS was directed towards a general

representation of "key" Army MOS. The inclusion of several MOS (e.g., the combat jobs)

that were known to contain more cognitive g and a common "general adjustment to the

Army" factor than most other Army jobs reflected the importance of these jobs to the Army.

A job sample with inherently greater differentiation between job families would have

provided a better sample 'or detecting differences between classification and selection

efficient methods. Zeidner and Johnson (1989b, Chapter 5) discuss a study based on this

particular aspect of classification research where alternative degrees of classification

efficient job clustering are examined as part of a strategy for improving PCE. This study

will examine the loss in utility when the Army job families are reduced to six and the gain if

they are increased to twelve for one data set and, for another data set, will compare the

amount of PCE provided by job family sets with 9, 16, and 23 members. This should

provide a more refined assessment of the effect of increasing FLS composites and their

associated job families on classification efficiency.

The ability to generalize the findings of this research to the Army's populations of

jobs and incumbents should be viewed within the limitations posed by the methodological

nature of the design. Conditions were not constrained to Army-specific requirements (e.g.,

MOS priorities or job-specific quality goals). Clearly, widespread changes to the current

system would require further research designed within the specific requirements of each

Service. The advantage of this approach for the purposes of this study is that it allows the

superiority of competing nethodologies to be isolated from possible policy influences.

Realistic quotas imposed on the simulation would have increased the variance of MPP

across jobs with the combat jobs being lowered the most. A simulation of all assignment

policies would have necessarily included quality distribution goals across jobs. Nord and

White (1988) note that one of the effects of constraining an allocation system to meet

quality distribution goals is to lower average predicted performance and make it less

variable across jobs. Thus, if policies had been more closely simulated, differences

between alternative assignment situations would have become harder to detect, and the

methodological intent of this research hindered.
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Generalizing to jobs in the other military services would seem feasible given that the

assignment policies and ASVAB validities for these jobs are comparable to those of the

Army.
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V. RELATIONSHIP BETWEEN THE RESEARCH FINDINGS

AND DIFFERENTIAL ASSIGNMENT THEORY

A. CONCEPTS AND PRINCIPLES OF DIFFERENTIAL ASSIGNMENT
THEORY

A major aspect of the importance of these findings is their contribution to the

understanding of differential assignment theory (DAT). Also, the findings of this study are

best understood in the context of DAT. One purpose of this chapter is to describe how

these findings may be used to refine the principles of this theory. DAT and alternative

theories relating to selection, placement and classification of personnel are first summarized

and the relevance of study results to these theories is examined.

DAT provides a basis for generating a large number of principles applicable to the

improvement of operational personnel systems. These principles are obtained as a result of

focusing on the gains obtainable from a deliberate and methodologically correct attempt to

capitalize on the differing requirements of jobs, using optimal selection and assignment

algorithms in an appropriate context. This context includes: (1) appropriate test batteries;

(2) best weighted selection and assignment variables; and (3) well structured job families.

The psychometric principles of DAT are factual within the constraints of the assumptions

necessary to derive them.

The practicality of applying some DAT principles depends on the existence of

empirical relationships in a multidimensional joint predictor-criterion (JP-C) space that are

non-trivial after sampling error is taken into account, and robust simplifying assumptions

required to estimate the solutions of multidimensional integrals. Both conditions can be

readily verified or rejected by means of model sampling experiments.

DAT is enriched by broadly based validity generalization (VG) concepts and

findings. However, the VG emphasis on a general cognitive ability factor, g, or on g plus

one or two additional group factors, prevalent among strong proponents of VG theory, is

not a requisite characteristic of DAT. While the theory is not restricted to any particular

factor structure, the assumption of a non-trivial degree of multidimensionality in the JP-C

space is essential.
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DAT principles originate from either mathematical derivations or empirical

observations; they have been identified principally by attending to four organizing

concepts. These concepts involve making assumptions regarding the relationships that can

be found among predictors, criterion variables, and dollar-based benefits in the context of

well designed personnel utilization systems. Assumptions inherent in these concepts

permit us to speak only of a theory of differential assignment rather than a simple set of

algebraic derivations and/or empirical data supporting the principles.

The first of these concepts holds that there is a set of quantitative principles

governing: (1) selection of predictors for inclusion in experimental pools of predictor

measures, in operational batteries, or in sets of test composites, to maximize selection,
placement, and/or classification benefits; (2) the optimal constitution of job families;

and (3) the selection of strategies (e.g., one-stage versus two-stage) and algorithms for

the selection, assignment, or simultaneous selection-assignment of personnel. These
principles must be followed in order to maximize benefits, and must be considered along

with costs to maximize system utility.

The second concept is based on the assumption that utility models, balancing costs

and benefits, provide the best approach for specifying personnel selection and classification

policies and procedures for operational systems. It is further assumed that benefits
attainable from such personnel systems are most appropriately measured in terms of

predicted pfformance, possibly weighted by the dollar value of a given level of

performance for each job.

The third concept incorporates the well-known principle that the benefits of both

selection and classification pocedures can under certain circumstances be maximized by the
use of the same test composites for selection and/or classification; i.e., the "best" test

composites corresponding to the same job or job family having the same tests and weights.

The hard decision as Lo whether selection or classification efficiency should be maximized

can be avoided, but only if each composite is a full least square (FLS) estimate based on the

"full" battery (i.e., containing all the available tests).

An assignment system that uses FLS composites for all selection and assignment

variables and optimally assigns personnel separately to all jobs, is an optimal assignment

system for both selection and classification. When a subset of the experimental test pool is

selected for inclusion in the operational battery, or when simplified composites that are not
FLS composites are selected from the operational battery for utilization in selection or
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assignment variables, or when jobs are clustered into a small number of job families, then

less efficient substitutions have been made into this potentially optimal assignment system.

In making these substitutions, it is inevitable that classification efficiency will suffer if

selection efficiency, relying on the maximization of predictive validity, is optimized without

specific consideration of classification efficiency.

This third concept includes the assumption that non-trivial increases in benefits, or

mean predicted performance (MPP) can result from deliberate attempts to maximize

classification efficiency. Findings of this study show that maximizing predictive validity,

without consideration of the effects of classification efficiency, will under some

circumstances, prevent maximizing MPP; a finding consistent with other evidence. This

concept contrasts to a point of view, one particularly prevalent among VG proponents,

holding that the appearance of classification efficiency in the absence of hierarchical

classification (HC) effects is almost always due to sampling error or to the effects of

various biases.

The fourth concept holds that the computer age makes it practical to implement

operationally any multidimensional selection and assignment strategy and algorithm that can

be shown to provide gains in MPP, regardless of the complexity of the process.

DAT provides the basis for generating a large number of principles. (See Johnson

and Zeidner (1990) for a comprehensive treatment of these principles.) Until recently,

substantial evidence that real world relationships predicted by these principles would

produce non-trivial effects (in the context of realistic measures of benefits and controlling

for sampling error) has for the most part been lacking. For practical reasons, such

evidence could be produced only through simulation experiments such as the one used in

this study. Ten representative DAT principles are summarized below.

1. Use of FLS Composites

Probably the most important of these DAT principles is that the "best" selection and

assignment variable, (i.e., "best" for maximizing either selection or classification

efficiency), is an FLS composite. When for practical reasons predictors are selected from

an experimental pool for inclusion in an operational test battery, and/or further selection of

tests is made to provide smaller test composites (e.g., as in aptitude area test composites of

the services), different sets of tests will maximize PSE and PCE. Also, as jobs are

clustered into job families, differe ipproaches are required to provide families that
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optimize PCE as contrasted to PSE. Whether the gain in PCE and the loss in PSE resulting

from the use of classification efficient test selection methods is substantial, moderate or

negligible is partially determined in the present study.

2. Measurement of Potential Classification Efficiency (PCE)

This principle states how PCE can be measured. Benefits obtained from a

classification process can be determined only after assignment of individuals or simulation

entities have been accomplished using the specified assignment strategy. Gains or losses in

PCE cannot be determined solely as a function of predictive validity or by such techniques

as path analysis. For this reason, most empirical findings relating to the effect on PCE of

various conditions (e.g., method of test selection, number of tests in composites, number

of assignment variables) have been obtained by means of a personnel system simulation

that includes assignment of personnel, and also usually includes a selection procedure.

3. Estimating Mean Predicted Performance (MPP) as a Function of R, r,
and f(m)

The potential gain in PCE from the application of several DAT principles can be

stated in terms of Brogden's formulation of MPP (Brogden, 1959). Brogden's model and

the extension of this model by Johnson and Zeidner (1990) provide approximate roles for:

(1) average predictive validity, R, (2) the average intercorrelation among FLS composites,

r, and (3) an order function, f(m), reflecting the effect of the number of jobs, or job

families (m), and corresponding test composites. The MPP standard score is predicted by

Brogden's formula: MPP = f(m) times R times (1-r) 1/2. It is notable that r can be, and

usually is, quite large without causing the magnitude of PCE to become negligible.

4. Source of PCE

PCE is derived from two often competing sources: allocation effects due to

differential validity and hierarchical classification (H) effects due to the matching of

hierarchical layers of predictor scores to the mean benefits attached to each job. HC effects

can be present even if there is only a single predictor composite used for all jobs, if

hierarchical layering effects of mean validities or job values match the layers of benefits

attached to jobs. It should be noted that the same linear programming (LP) assignment

algorithm may be used whether PCE consists only of allocation effects, HC effects, or a

combination.
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Allocation efficiency results from the variance within each individual of predicted

performance for different jobs. The presence of such variance is demonstrated by

differential validity, higher validity for each composite with its associated job criterion than

for the other criterion measures. The potential end result of making optimal assignments

using a set of composites possessing differential validity is analogous to improving the SR

for those selected for assignment to each job (or job family). That is, when the pool to be

assigned is separately rank ordered on predicted performance (PP) for each job family,

only the upper portion of the continuum is assigned to that job. This analogy does not hold

for HC effects, since with only one predictor (or a single dimension in the test battery) the

assignees are deposited in successive layers with no improvement in the average percent of

assignees ending up in the upper portion of the PP continuum for each job family.

Although HC effects provide no improvement along lines analogous to SR, either HC or

allocation effects in the assignment process can provide an increase in MPP.

5. The Dimensionality of the Joint Predictor-Criterion (JP-C) Space

Factor analysis is a significant tool in classification systems research and has an

important role in DAT. The JP-C space, rather than test space or common factor space, a

subset of test space, is the domain of interest for investigating the utility of selection and

classification processes. It is in this joint space that Id and Ha is measured and that factors

for maximizing either selection or classification effects can be identified.

6. The Number of Predictors in a Composite

The incremental gains provided by adding more tests, either to each composite or to

the operational battery, approach zero much faster for unidimensional than for
multidimensional selection and/or classification processes. Thus, the best five tests

selected from an experimental pool of predictors and used in an LSE of the criterion can be

expected to approach the maximum validity obtainable for that predictor pool as computed
in independent samples (i.e., for the computing of "cross validities"). Conversely, an

unbiased measure of PCE will continue to increase as the size of the operational battery is

increased to several times this number (assuming the tests are appropriately selected and

there are a half dozen or more fairly heterogeneous job families).
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7. Clustering Jobs into Families

In general, increasing the number of assignment composites and associated job

families adds to PCE. However, there are a number of different ways in which the number

of assignment variables can be increased. The existing operational job families could be

shredded into relatively homogeneous smaller job clusters; the total set of jobs might be

reconstituted into classification efficient clusters; or the number of job families might be

increased without expanding the JP-C space. The magnitude of a -ain in PCE resulting

from an increase in the number of assignment composites and job families will depend on

the method used to provide more job families, the heterogeneity of jobs in the JP-C space,

and the number of composites from which an increase is being accomplished.

Brogden provides an estimate of the potential gain from expanding the JP-C space

by adding additional jobs or job families with associated FLS composites possessing an

independent component. This model predicts that an increase of the number of FLS

composites from 5 to 10 will provide a percentage gain in MPP of 33 percent. This

magnitude of gain is more than would be predicted from the increase of the number of jobs

from 9 to 18, as is the case in the present study, where the additional jobs are in the same

JP-C space. However, it is less than would be expected for such an increase in job
families using a method that increases the average validity and decreases the average

intercorrelations of the FLS composites.

To compare the circumstances under which the assignment variables in this study

were doubled in number with the circumstances implied by Brogden's model, consider a

set of four jobs from each of four existing Army job families (i.e., families corresponding

to Army aptitude area composites). If FLS composites for each of these jobs are used as

assignment variables and then augmented by four more FLS composites associated with

four additional Army jobs, each associated with a different job family than the first four

jobs, we would expect the gain in MPP (PCE) to approximate that predicted by Brogden's

model. However, if the number of jobs and assignment variables were to be doubled in a

different manner, by selecting an additional job from each of the first four job families, tie

circumstances would closely resemble those of this study where the number of jobs was

doubled (i.e., from 9 to 18). We would expect a much smaller gain under these latter

circumstances because the added jobs do not appreciably expand the scope of the JP-C

space. However, we do expect a non-trivial increase because of the increased number of

job continuums on which PP scores can be rank ordered and only the best accepted for

assignment in a manner analogous to obtaining an improved overall selection ratio.
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8. Optimal Assignment of Individuals to Jobs

There are a number of crucial DAT principles bearing on the effect that constraints

have on overall MPP standard scores and on the MPP standard scores of those assigned to

each job (i.e., quality distribution). For example, the optimal assignment of individuals, to

meet job quotas and maximize total MPP, can be obtained by assigning each individual to

his highest adjusted predicted performance (PP) score; adjusted PP scores are defined as

PP scores plus appropriate job constants (i.e. dual parameters). A number of variables

affect the relative magnitude of these dual parameters. Other things being equal, the jobs

with the larger quotas have the larger dual parameter. Similarly, the jobs whose PP
variables have the highest average correlations with other PP scores have larger dual

parameters.

9. Selection and/or Classification Strategies

There are many alternative selection and/or classification strategies including:

(1) selecting applicants into the organization on a single predictor and then classifying those

not rejected, using multiple assignment variables, to specific jobs (the traditional two-stage

strategy); (2) using one predictor at a time in a sequence of select - train - select - train -
select - place (a multiple hurdle strategy as used in the Army's helicopter pilot program);

and (3) simultaneous selection and optimal classification to multiple jobs, as in the single

stage MDS algorithm described by Johnson and Zeidner (1990).

The MDS algorithm is best understood in the context of Brogden's model (1959)

where each predictor is an FLS composite yielding a score that divides into a general and a

unique component. The increased MPP resulting from classifying a selected set of

applicants, instead of classifying all applicants (with no rejections), is in Brogden's model

the result of an assignment strategy in which applicants are simultaneously selected and

classified to jobs using only the unique components, u, of the FLS composites. Removing

the g component produces no adverse effect on the MPP resulting from classification, but

obviously loses the gain in MPP that would result from also selecting oil g, instead of only

on u. Johnson and Zeidner (1990) modify Brogden's model to reflect a strategy in which

selection is on the g component and classification remains (in a second stage) on the u

component of each FLS composite score. This latter strategy increase the gain in MPP

obtained from selection effects when g constitutes a large part of each score (as is usually

the case). A simultaneous, one stage, selection-classification strategy (i.e., MDS) such as
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is implied by Brogden's model--but using the complete FLS composite score instead of just

u--provides the maximum possible amount of MPP.

DAT points to MDS as the optimal selection-classification strategy; unfortunately

MDS has never been implemented operationally, possibly because DAT is poorly

understood and possibly because the power of modem computer technology has been only

partially applied to operational selection and assignment systems.

10. The Use of Factor Scores as Assignment Variables

Factor scores provide a means of maximizing the PCE obtainable from a small

set of k composite scores for a fixed structure of m jobs or job families (k < m) to be

recorded in a soldier's personnel record. Given that this small number (k) of recorded

assignment variables can be computed from a larger number of predictors in an operational

test battery, and each assignment variable is an LSE (based on the k recorded composites)

predicting one of the m job criteria, the PCE attainable from recorded test composites is

smaller than the PCE attain from use of the full operational battery to compute each

assignment variable. This decrement in PCE may not be large enough to outweigh the

advantage or recording and using the scores of the k composites noted above. These k

composites would be factor scores, that is, FLS estimates of factors obtained so as to

maximize classification effectiveness. Such a factor solution will be described below.

A factor solution, providing factor coefficients for the predictors against factors for

which the factor contributions in the JP-C space are also each factor's contribution to Hd, is

first computed in the manner described by Johnson and Zeidner (1990). Hd can be

maximized for a given number of factors by retaining those with the largest contributions.

Factor scores computed as FLS estimates of these retained factors maximize PCE to the

extent that Hd approximates PCE.

Classification efficient factors are obtained by rotating a PC solution obtained in

the JP-C space to a solution for which each factor successively maximizes Hd. The

computation of predictor weights that provide an FLS estimate of these classification

efficient factors readily follows. The use of factor scores in an hypothetical two-tiered

operational system is described in Zeidner and Johnson (1989b).

Having reviewed organizing concepts and representative principles of DAT, DAT

can be summarized as a collection of concepts and principles concerned with how to

measure and optimize selection, placement, and classification systems. This theory differs
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from alternative theories with the same objective in its emphasis on utility and methods for

capitalizing on the multidimensionality of the joint predictor-criterion space. Evolving from

the acceptance of MPP as the basis for measuring the benefits component of utility, DAT

uses MPP as the means of evaluating all selection, placement, and classification

approaches. DAT most obviously differs from any theory which considers the benefits

accruing from classification systems to be the sole function of predictive validity.

However, DAT equally differs from any theory which does not recognize the validity and

importance of the validity generalization movement in its contradiction of "situational

specificity theory."

B. A COMPARISON OF DIFFERENTIAL ASSIGNMENT THEORY WITH

ALTERNATIVE THEORIES

There are a number of alternative theories to DAT, including, at one extreme, one

aptly described by Ghiselli (1959) as the "situational specific theory," and, at the other,
"general factor" theory. General factor theory ascribes an all pervasive, overriding

dominance of a single general cognitive ability measure in the JP-C space, and concedes no
reliable importance to any other measure in that joint space. General factor theory is

referred to as general cognitive aptitude theory by Schmidt, Hunter, and Larson (1988).

Those holding to the latter theory can be counted upon to support VG concepts, but

VG proponents do not necessarily support the "general factor theory" or general cognitive
aptitude theory as described by Schmidt et al. (1988); thus, these two schools of thought

are by no means identical. DAT also incorporates the empirical findings and lessons

learned from VG theorists concerning: (1) the strength of validity generalization across

jobs; (2) the desirability of using adequate sized samples to estimate validities (often

obtained by referencing broader universes); and (3) the difficulties to be expected in the

development of operational systems having the desired level of classification efficiency.

Situational specificity proponents mandate that empirical validation is required in
each situation where there is a difference resulting from the characteristics of jobs,

organizations or criteria. This requirement must be met to justify the use of a
predetermined predictor measure as a selection, placement, or classification device.

Situational specificity theorists may argue a "scientist" would not presume to use the results

of a previous validation study for a slightly different job, criterion, location, or applicant

group for which all situational variables were not exact fits. Thus it would not be possible

to develop test composites for use in ongoing selection and classification situations for fear
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that situational changes would have occurred since the last validation, validities could not
be presumed to generalize to closely related jobs within the same job families, and general
principles could not be drawn from personnel measurement research.

If situational specificity views were true, that is, if no more than a trivial amount of
validity generalization exists, the potential for operational classification systems would be
great indeed. Unfortunately, this potential, like selection potential, would be impossible to
realize without an impractical number of situational specific validation studies. If in
rejecting the situational specific point of view, one swings entirely to the unidimensional

view of JP-C space, the feasibility of implementing systems having selection effectiveness
is very good, but the feasibility of implementing an effective allocation system disappears.

That is, the implementation of any operational system possessing an acceptable level of
classification efficiency, other than that due to HC effects, becomes highly unlikely because
of the expense involved in conducting the required number of situational specific validation

studies.

DAT is compatible with the prevailing evidence that a single principal component

factor often explains 60 to 80 percent of the total factor contribution in the JP-C space. The
remaining 20 to 40 percent of the total factor contributions can provide the basis for non-
trivial classification efficiency in the space bounded by the smaller factors and the largest

factor (g). However, DAT does not require the acceptance of a particular factor structure
(e.g., a single factor for explaining general cognitive ability) as explanatory of the
relationships among cognitive or non-cognitive predictors in the JP-C space. The factor

structure in either test space or common factor space, as defined by predictors only, is not

relevant to DAT.

Brogden's (1959) model assumes a factor structure in the JP-C space

corresponding to Spearman's two factor theory. This assumption avoids the necessity of

solving intractable multivariate integrals, thus simplifying the computations required to
estimate PCE for varying classification system characteristics. The relationships among
Brogden's "predictors" (FLS composites providing PP scores) are entirely explained by a

single general factor, but he also assumes as many unique factors as there are jobs. We
believe Brogden did not hold that Spearman's two factor theory was an accurate
representation of empirical relationships. However, Brogden's model that implies the
factor structure of Spearman's "two factor theory" structure with his assumptions (although
Brogden does not mention a factor structure) provides a clever approximation of the
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benefits that can be reasonably expected to result from a classification system. It is likely

that the model is usefully robust when mean R and mean r are used to enter his tables. The

degree of robustness could be readily measured using scores from model sampling in a

simulation of personnel selection-classification systems that deviate to varying degrees
from Brogden's assumptions. Evidence of a useful amiount of robustness is provided here.

Schmidt, Hunter, and Larson (1988) describe three theories entirely in terms of
predictive validity. They are obviously proponents of the general cognitive ability theory

and, to a lesser extent, of group aptitude theory. Schmidt et al. (1988) provide data that

argues against the adequacy of specific aptitude theory.

The critical distinction between results in support of general cognitive ability theory,
as contrasted with contradictory results in support of specific aptitude theory, lies in which

of the following provides the largest "cross-validity": (1) either AAs or LSEs based on a
small number of best predictors for each job; or (2) a predetermined measure of general

cognitive ability. They make a similar comparison between the validities of: (1) LSEs

based on tests (as dependent variables), and (2) LSEs based on test composites (as

dependent variables). They obtain similar findings favoring the general cognitive aptitude

theory as compared to the group factor theory. However, it is highly questionable whether

group factor scores are adequately represented by the use of such test composites as used in

the Schmidt et al. study.

While it could be argued that the use of only predictive validity in defining the three

theories in the Schmidt et al. study is irrelevant to DAT, they are possibly the most
influential of the alternatives to DAT and have guided many investigators in the

development of classification systems. Those interested in increasing the classification

efficiency of operational systems should oppose the tenets of all three theories because of

their mutual assumption that achieving gains in predictive validity is appropriately the

primary goal in the design of classification systems and strategies. We believe that the lack

of PAE in the existing ASVAB and its operational composites is largely due to dependence

on one oi more of these erroneous theories.

While the specific aptitude theory encourages the belief that suitable classification

measures can be developed without the use of effective indices for measuring PCE, general

Lognitive theory on the other hand, encourages the belief that the very attempt to develop

classification efficient measures is a hopeless cause. Thus we are equally opposed to both.
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Expectations of results from this study and its companion studies differ depending

on whether DAT or one of the alternative theories are preferred as the best organizing

and explanatory framework. For example, those emphasizing the primacy of g in both

selection and classification, might expect all gains provided by ten predictors over five to

disappear in cross samples (as an artifact of error variance). Similarly, this theory would

predict Max-PSE to be as good an index for use in selecting tests for an operational

classification battery as either PDI or Hal, and should not predict greater PCE from the use

of 18 instead of 9 jobs and corresponding FLS estimates as assignment variables. Our

results as indicated, controlling the effects of sampling error, show the expectations of "g

theorists" to be inappropriate in the context of the classification process.

C. POTENTIAL CONTRIBUTION OF DIFFERENTIAL ASSIGNMENT
THEORY TO OPERATIONAL SELECTION AND ASSIGNMENT
SYSTEMS

DAT provides a basis for recommending a number of changes in the overall

strategy for selecting and assigning personnel in the military services. Four major changes

are listed in the order of their potential contribution to a larger MPP.

1. Improve test composites used for selection and assignment by:

(a) using FLS composites for existing job families with each composite converted
to AAs having means of 100 and standard deviations of 20; or, alternatively,

(b) using unconverted FLS composites permitting capitalization on HC effects.

2. Improve classification efficiency of job families by:

(a) increasing the number of job families by shredding the nine job families
associated with the Army AAs; or, alternatively,

(b) maximizing classification efficiency of job families by increasing and
reconstituting families in accordance with DAT.

3. Improve predictor content by:

(a) providing preliminary studies for selecting classification efficient predictor
measures; and

(b) selecting a classification efficient operational battery.

4. Improve selection and assignment strategy by:

(a) optimizing the traditional two-stage strategy; or
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(b) utilizing simultaneous selection-classification (single stage) strategy with an
MDS algorithm; or

(c) utilizing a two-tiered approach in which the first tier uses FLS estimates for a
maximum number of job families and the second tier uses a small number of
factor scores recorded in the personnel record for job counseling, cut scores,
and related purposes.

Simulation results obtained by Sorenson (1965a) and Nord and Schmitz (1989) are

consistent with Brogden's proof (Brogden, 1955) that the maximum gain from any one

source is provided by using FLS composites. When the Army AA composites used in

conjunction with an optimnal two-stage strategy and an optimal assignment algorithm are

used as the basis of compaison, the percentage gains over chance assignment provided by

using FLS composites as assignment variables would lie somewhere between 70 and

100 percent. The further gain provided by capitalizing on HC could range from a trivial

amount to 10 or 20 percent. An estimate based on the "four variable model" described in
Appendix 1B of Johnson and Zeidner (1990) indicates that a 10 percent gain in PCE could

be expected if the Army classification battery was permitted to utilize HC effects. The
results reported here suggest the gains obtainable from HC effects in an improved

classification battery could range from 10 percent to 20 percent. More direct evidence

based on fewer assumptions will be provided in a related GWU study investigating the

magnitude of contributions to PCE by HC effects.

DAT principles predict that further gains obtainable from shredding the existing job
families into a larger number, over and above those obtainable from the use of FLS
composites corresponding to the existing families, would be 20 to 40 percent over chance

for an increase of from 9 to 18 jobs. This study shows that doubling the number of job

families (each with separate associated assignment composites) by adding another J ob from

each job family, without including all jobs in both sets of 9 and 18 job families, provides a

gain in classification efficiency of around 10 percent. We believe that using an optimal

reconstitution of a larger number of jobs, with all jobs included in each set of job families,

to increase the number of job families from 9 to 18 can be expected to provide a total gain

over chance assignment of 30 to 50 percent, an increase that can be added to the gain of
from 70 to 100 percent over chance obtainable from substituting FLS composites for AAs

while using the existing job families.

The gains obtainable from selecting classification efficient tests from an appropriate
pool of experimental predictors, preselected or developed to be classification efficient, are
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probably the most difficult to estimate. In the absence of an appropriate pool of

experimental predictors, algebraic techniques, simulation models, or any number of

empirical studies on the extant data cannot provide convincing estimates. As more evidence

is accumulated, the possibility that a creative development of new predictors would provide

a sizable further gain remains a credible possibility. Methods for detecting new

classification efficient predictors within the limitations of currcnt research efforts are

provided by Zeidner and Johnson (1989) and Johnson and Zeidner (1990).

The present study employs estimates from a credible universe for use in generating

samples of entities through the use of intercorrelations and validates obtained from the

Project A experimental pool of predictors. This pool seems to have been assembled with

the goal of increasing predictive, rather than differential validity. The experimental

variables include biographical and interest inventories, perceptual tasks, and "video game"

type tasks. While Project A investigators succeeded in increasing the heterogeneity of the
predictor pool as compared to the ASVAB, the manner in which this content heterogeneity

was increased would not necessarily result in improved differential validity. Most of the

experimental non-cognitive predictors appear equally relevant to many, if not all, Army job

families.

There is undoubtedly a non-cognitive g, with similar psychometric characteristics

as the better known general cognitive ability measure (cognitive g). The lack of differential

validity, that is having the same level of validity across all jobs in an organization, is

characteristic of both cognitive and non-cognitive general measures (cognitive and non-

cognitive g). Other than through HC effects, neither g contributes to classification

efficiency.

Johnson, Klieger, and Frankfeldt (1958) and Johnson and Kotula (1958) describe
the tendency of self-description tests (including those Vith interest and biographical items)

to equally predict performance in most other jobs, even when scored with empirical keys

developed against performance in specific jobs, unless the tests are specifically designed to

be differential. The Army Classification Battery self-description test, titled the Army

Classification Inventory (CI), provides an excellent example of non-cognitive g. This 125
item test was developed using combat criteria and combat potential ratings collected in

combat training situations.

Classification efficient tests should have their highest corrected validates in the job
family for which the test was developed and an appreciably lower average validity in all
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other job families. In order to make this kind of comparison we use data provided by

Sorenson (1965, pp. 91-20) to pair tests to their corresponding job families in order to

make a thumb nail evaluation of their classification efficiency. For this purpose we pair

the CI with the two job families then making up the combat arms (IN and AE); Arithmetic

Reasoning (AR), the best measure of cognitive g in the JP-C space, is paired with the

general technical job family (GT); Automotive Information (Al) is paired with the

mechanical repair family (MM); Electronics Information (El) with the electronics family

(EL); and Army Clerical Speed (ACS) with the clerical family (CL). We note that CI has

an average validity of .28 in the combat arms and in the other families, an average validity

of .46, with a range of between .41 and .59. Similarly, AR has an average validity of .65

in GT and, in the remaining families, an average validity of .54, with a range of between

.43 and .69.

Validities are corrected for restriction in range, but not for attenuation. The combat

arms criteria are fairly reliable multiple rating- (r approximately equals .60), while the

other families used school performance measures as criteria. The sample sizes were large,

totalling 11,807. Even after makin. rough corrections for the differing criterion

reliabilities, the measure of non-cognitive g appears to have generalized at least as much as

the measure of cognitive g.

We now look at the validities of the three tests for which we expect to obtain

differential validity. Al has an average validity of .65 in MM and an average validity of .36

in all other families; EI has an average validity of .60 in EL and an average validity of .43

in all other families; and, ACS has an average validity of .58 in CL and an average validity

of .38 in all other families. The difference between the differential validities of the two g

measures and those of these three job oriented measures is striking.

The non-cognitive g found in Project A experimental measures includes general

adjustment to the organization (e.g., to the Army) and other job performance characteristics

(e.g., achievement motivation) that are equally valuable across all jobs in the organization.

While achieving predictor heterogeneity in this manner may improve selection efficiency

(predictive validity), such heterogeneity will contribute little to classification efficiency.

The results of this present study would have undoubtedly shown a greater difference

between the effects of test selection using classification efficient versus selection efficient

indices if the Project A test development process placed a greater emphasis on finding

classification efficient predictors for the experimental pool.
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Our study supports the DAT prediction that the use of PDI or Hd indices rather than

Max-PSE to select tests for an operational battery increases PCE. This finding indirectly

supports a prediction that attention to similar characteristics in selecting tests for the

experimental pool would increase the PCE of the pool. The operational battery might profit

more from the consideration of PCE in an earlier stage of research, when predictors are

being developed or selected for inclusion in the experimental pool, than from a later

selection of tests from a pool that has already been limited to predictors intended for

maximizing predictive validity.

The recommended fourth change derived from DAT calls for optimizing the

selection and assignment strategy. The traditional distinct procedures of first being selected

by AFQT and then being assigned to a job using a set of composite scores from the

ASVAB in a later assignment process is far from optimal. Total MPP resulting from both

processes is raised, while achieving the same job quotas and selection ratio (SR) by:

(1) substituting a FLS measure for AFQT, and (2) using a lower cut score on this selection

measure, in conjunction with (3) a higher cut score on the AA associated with each entry

job.

Total MPP can be maximized by raising the cut scores on a separate FLS measure

for each entry job to the point where the use of either AFQT or the FLS measure governing

entry into the organization has a trivial effect. This can be accomplished through use of the

MDS algorithm described by Johnson and Zeidner (1990).

This study provides direct support for the implementation of changes 1 and 2b

abyve and indirect support for accomplishing change 2a. The companion studies in

progress will provide model sampling evidence pertaining to changes 2, 3, and 4.

D. RESEARCH FINDINGS IN THE CONTEXT OF DIFFERENTIAL
ASSIGNMENT THEORY

DAT is appreciably shaped by the results of the present study; we anticipate further

refinement in DAT to result from the completion of the ongoing companion studies. The

higher MPP provided by both PDI and H4 over Max-PSE and the superiority of ten tests

over five tests both provide strong evidence for the credibility of the DAT assumption of a

non-trivial degree of multidimensionality in the JP-C space. The higher MPP provided by

assignment to 18 jobs, as compared to 9 jobs, supports the accuracy and robustness of

Brogden's model (1959).
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There are other more subtle conclusions that can be drawn from the present study

that were unexpected, and thus more exciting with respect to the increased understanding of
DAT. These unanticipated results relate more to the intensity of effects than to their

direction. As is generally true, the design of this study has less sensitivity for detecting

relationships that have not been hypothesized as important before the collection of data.

For example, DAT predicts the advantage of PDI over Hd to not only exist but to be more
in evidence when assignment is to 9 jobs than when assignment is to 18 jobs. This reflects

the decreasing opportunity for Hd to erroneously capitalize on the interaction of a job and a

predictor to select a different test than would be selected by PDI as the number of jobs (or

job families) and corresponding composites increases.

Most Army researclers in the 1960s believed that differential validity and predictive
validity ;Aere reduced when supervisory ratings rather than school grades were used as

criteria. In that era, school grades tended to be normative rather than criterion referenced.
Today's Army school grades are usually less reliable than formerly, particularly at the

upper end of the distribution, and are designed to minimize student failures. Many of the
"passing" students later attain unacceptable low scores on the skill qualification test (SQT).
We do not quarrel with this training philosophy, but suggest that the school grades of

earlier decades were a superior measure for research purposes.

The SQT is now a less reliable measure of performance because of the exclusion of
a mere difficult type of question from the test. The more difficult items associated with the

next higher skill level once, in earlier SQTs, made up 25% of the items of a SQT. It now
appears necessary to de, elop tailored "hands-on" performance tests and achievement tests

to obtain the psychometric characteristics of earlier school performance and SQT measures.

Of the five criterion components used by the Project A investigators to measure job
performance, four are measures of general soldier performance reflecting characteristics
which cut across jobs and thus have little relevance to classification. If these four general

criterion components were used without the MOS specific component there could be no

evaluation of personnel classification. If these four components were to be designated as
the only components of interest to policymakers, one would have to conclude that any

further effort to maintain a classification system should be discontinued.

Only one of the five Project A criterion components measures specific performance
in a given MOS as contrasted with general military duties. The differential validity is

greater against this component than against the sum of all five components. We may
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further predict that there will be more differential validity when the MOS specific criterion

component includes a hands-on component than when this component consists primarily of

ratings and paper and pencil tests.

Assuming the presence of greater differential validity for the set of 9 jobs with

criterion variables that includes hands-on criterion measures (as contrasted with the other 9

jobs), we would expect greater sensitivity under these conditions to the use of classification

efficient indices fo test selection. In contrast, the use of 18 jobs instead of 9, while

providing a larger MPP, also permits a larger contribution of the g factor (as discussed

earlier), thus decreasing the sensitivity to the advantage of using classification efficient

indices. It is logical that a superior index provides a detectable superiority in selecting tests

that will provide greater PCE over alternate indices under the more sensitive conditions,

and may fail to reject the null hypothesis under the less sensitive conditions.

As noted above, there is reason to believe that the experimental condition involving

18 jobs also provides less sensitivity to the advantage it is hypothesized PDI has over Hd.

Furthermore we would predict from DAT principles that a sufficient sample size in a model

sampling experiment would provide the detectability of the effect of such conditions as type

of criterion and number of jobs with respect to the significance level that the hypothesis of

no difference between PDI and Hd is rejected. We did not predict that 20 samples

(replications) in each cell (as in the present study) would be large enough to provide this

distinction.

With the hindsight of having seen the results, we now hypothesize that: (1) another

20 replications in the cell representing the conditions of 5 tests, hands-on criteria and 9 jobs

would again, as in this study, provide statistical significance, and (2) another 20

replications in the cell repre3enting the conditions of 5 tests with 18 jobs, plus a third set of

20 replications in the cell representing 5 tests and 18 jobs, would not provide statistical

significance for a difference in favor of Hd over PDI, (separately or together) with the 60

replications we already have in these three cells. We could legitimately test such a

compound hypothesis as if we had determined in a back-sample which comparisons and

hypotheses we wished to make in a cross-sample. Our own conclusions regarding the

relative merits of PDI and Hd will have to await the collection of this further model

sampling data. Until then we recommend the use of PD! when there is no special reason to

use Hd, but cannot provide evidence for this conclusion in terms of a rejected null
hypothesis.
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VI. SUMMARY AND CONCLUSIONS

This study is the first in a series designed to examine methods for improving the

classification efficiency of the Army's selection and classification system. In the present

experiment, the classification utility of alternative methods of test selection was examined in

the context of other factors influencing classification efficiency. In general, five major

procedures were involved in determining the potential improvement in classification

efficiency (CE) under each approach: (1) selection of alternative test batteries from a pool

of 29 predictors whose intercorrelations and validity coefficients for 19 jobs were based on

a sample of 7045 subjects; (2) generation of synthetic test scores for the selected batteries

using a model sampling technique; (3) truncation of each synthetic sample of test scores

using a selection ratio of 0.70; (4) optimal assignment of the synthetic sample to MOS

based on the test scores; and (5) evaluation of alternative test selection methods under

different conditions using the results of optimal assignment (mean predicted performance

(MPP) standard scores).

The cross-validation design eliminated the possibility of bias both from back-

sample validities and further correlated error between regression weights calculated on the

same samples. Evaluation weights were based on the designated universe (the corrected

Project A empirical sample) and assignment weights on a sample drawn from this universe.

Hence, observed effects could not be attributed to bias or uncontrolled sources of error.

Evaluation of the MPP standard scores supported the primary experimental

hypothesis that CE methods of test selection would lead to greater MPP in an assigned

group than a selection efficient method. This finding was replicated across assignment

strategies with and without a hierarchical classification effect, using five or ten tests in the

battery and across nine jobs with and without "hands-on" measures of performance.

Reversals in the relative predicted direction of MPP were not statistically significant and,

therefore, could not be interpreted as indicating a lack of superiority of PDI, Hd or the

combined effect of the two under certain conditions.

Tests of the secondary hypotheses produced mixed results. The advantages of PDI

as an alternative to Hd were not observed at the level of significance chosen to interpret the

results, although the absolute MPPs under PDI were marginally higher in half the cases and
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overall at the .05 level. It is concluded that either index can be used, with confidence, to

estimate and improve PCE, although for theoretical reasons we would recommend the use

of PDI when a factorial model is not being used.

Improvements in MPP were of a practically significant magnitude as gauged by

Nord and Schmitz' (1989) estimates of the dollar value of predicted performance standard

scores. This suggested a substantial economic benefit in adopting classification efficient

strategies. It was also evident that these economic benefits could be derived at relatively

little cost since MPP was significantly improved without the need for an entirely new
"maximum CE" battery or an assignment strategy which capitalized on hierarchical

classification.

The omission of policy constraints precludes drawing definitive operational

recommendations for the Army based on these findings. However, test selection

methodology to achieve classification efficiency is recommended. This study has

successfully shown that, using either Hd or PDI, PCE can be increased with some

economic gain. Additionally, the study has shown that classification efficiency signifi-

cantly increases when the number of FLS predictors is increased from five to ten; the use of

hands-on criteria provides greater differential validity effects across jobs than can be

obtained through the use of rating criteria; and doubling the number of Project A jobs from

nine to eighteen provides an increase in overall MPP.
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GLOSSARY

allocation efficiency--The gain in benefit over random assignment obtained from an
optimal assignment process attributable to differential validity.

allocation process--Classification that capitalizes on differential job validity.

attenuationa --The reduction of a correlation or regression coefficient from its theoretical
true value due to the imperfect reliability of one or both measures entering into the
relationship.

batterya --A set of tests standardized on the same population, so that norm-referenced
scores on the several tests can be compared or u-ed in combination for decision
making.

benefit--A theoretically desirable measure of performance that is value-weighted for jobs
and validity in terms of an appropriate metric; when the benefit measure is correctly
combined with costs, it provides a measure of utility.

classification--The matching of individuals and jobs in an organization with the goal of
maximizing aggregate performance; it requires multiple predictors jointly measuring
more than one dimension and multidimensional job criteria.

classification battery--A battery of tests used operationally to classify personnel.

classification efficiency--The gain in benefits over random assignment obtained from
an actual assignment process in use that is attributable to allocation and hierarchical
classification efficiency; a separate LSE must be used for each criterion.

composite scorea --A score that combines several scores by a specified formula.

differential assignment theory (DAT)--DAT is defined by four organizing concepts:
(1) to maximize benefits, a set of quantitative principles must be employed that embrace
selection of predictors in a battery, the structure of job families and the strategies and
algorithms used in the selection/assignment process; (2) utility models, measuring
benefits in terms of mean predicted performance, provide the best approach for
specifying personnel selection policies and procedures for operational systems;
(3) benefits for both selection and classification procedures are maximized by using the
same weights for a given set of composites under optimal conditions, while under non-
optimal conditions, selection and classification must be separately considered; and
(4) any multidimensional selection/classification strategy and algorithm can be
practically implemented in operations by utilizing available computer capabilities.
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differential validity--The level of prediction using LSEs of differences among criterion
scores when referring to Ha; this measure is related to the variation of a validity vector
with jobs and to an assignment variable being more valid for its own job family than
any other job family.

efficiency--A solution that minimizes costs as measured by physical resources and time
utilized.

hierarchical classification efficiency--All classification efficiency not explainable as
allocation efficiency; it capitalizes on disparate variances of the mean predicted benefit
scores for the corresponding jobs.

hierarchical layering--A phenomenon in which LSEs are more valid or of more value
for some jobs than for others.

mean predicted performance (MPP)--The measurement of benefits can be
approximated by computing MPP across jobs; if MPP is weighted by the value of each
job, it becomes a more useful measure of benefits. It provides a means of comparing
the effectiveness of alternative sets of tests or test batteries in the context of a specified
set of jobs and performance scores.

multidimensional screening (MDS)--A selection/classification process using an
algorithm that ensures that no non-selected person has a higher predicted performance
on any job than the person assigned to that job; the algorithm also ensures that no other
assignment can further raise the mean predicted performance.

norm-referenced testa --An instrument for which interpretation is based on the
comparison of a test taker's performance to the performance of other people in a
specified group.

operational efficiency--The improvement in MPP obtained from the usually imperfect
operational selection assignment process as contrasted to potential efficiency; the
improvement obtainable if the maximally efficient prediction composites of a given
battery were to be used in optimal selection/assignment decisions.

potential allocation efficiency--The maximum allocation effectiveness achievable
from the differential validity of a given test battery and set of jobs expressed as a mean
predicted performance standard score.

potential classification efficiency--The maximum classification effectiveness
achievable from a given test battery and set of jobs expressed as a mean predicted
performance standard score; it incorporates both potential allocation and hierarchical
layering effects.

potential selection efficiency--Rank-ordering applicants on some benefit continuum

and rejecting all those below some point on that continuum.
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predictora --A measurable characteristic that predicts criterion performance such as scores
on a test, evidence of previous performance, and judgments of interviewers, panels or
raters.

psychometrica --Pertaining to the measurement of psychological characteristics such as
abilities, aptitudes, achievement, personality, traits, skill and knowledge.

regression equationa --An algebraic equation used to predict criterion performance from
predictor scores.

reliabilitya --The degree to which test scores are consistent, dependable or repeatable; that
is, the degree to which they are free of errors of measurement.

restriction of rangea --A situation in which, because of sampling restrictions, the
variability of data in the sample is less than the variability in the population of interest.

sampleb --The individuals who are actually tested from among those in the population to
which the procedure is to be applied.

scorea --Any specific number resulting from the assessment of an individual; a generic
term applied for convenience to such diverse measures as test scores, estimates of latent
variables, production counts, absence records, course grades, ratings, and so forth.

selection--A procedure for rejecting some applicants for organizational membership as
contrasted to assigning all applicants to jobs (classification); or rejecting an applicant for
a single job as contrasted to selection and assignment to one of a number of jobs
(multidimensional selection).

simulation modelc --A special type of abstract model that is analogous to a segment of
the real world and contains a time dimension. It is used to explain and predict behavior
as if it occurred on the real world.

standard scorea --A score that describes the location of a person's score within a set of
scores in terms of its distance from the mean in standard deviation units.

testb --A measure based on a sample of behavior.

unidimensionalitya --A characteristic of a test that measures only one latent variable.

utilityc --Technically, want-satisfying power; it is often defined as the preference of the
decisionmaker for a given outcome.

utility analysis--The determination of institutional gain or loss (outcomes) anticipated
from various courses of action usually measured in terms of dollars.

validitya --The degree to which a certain inference from a test is appropriate or
meaningful.

validity coefficienta --A coefficient of correlation that shows the strength of the relation

between the predictor and criterion.
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validity generalization--Often used synonomously with a particular approach to meta-
analysis of validity data across studies. Our use of the term is also intended to reflect
the stability of validity findings for all ability measures across jobs and situations.

variablea --A quantity that may take on any one of a specified set of values.

NOTES.-

a Adapted from American Psychological Association. American Educational Research

Association, and National Council on Measurement in Education (1985), Standards for
Education and Psychological Testing.

b Adapted from Society for Industrial and Organizational Psychology (1987), Principles

for the Validation and Use of Personnel Selection Procedures.

c Adapted from Heyne (1988), Microeconomics.
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TABLE A-3: MOS DESCRPTIONS

118 Leads, supervises and serves as a member of an infantry activity involving machine guns and
other weapons in offensive and defensive ccrat operations. Duty is to destroy enemy
personnel weapons and equipment.

129 Commrnds, serves or assists as a member of a team, squad, section or platoon engaged in
providing combat engineering support to comboat forces. Performs combat constrtuction,
demolitions and related duties.

138 Supervises or serves as a member of field artillery cannon unit. Participates in
eaplacement, Laying, firing and displacement of field artillery cannons.

16S Supervises or serves as a member of KANPADS missile unit by preparing and firing KANPADS
missile.

19E Leads, supervises or serves as a member of M49-M60 armor unit in offensive and defensive
corbat operations. Loads and fires tank main gun.

27E Supervises or performs direct and general support maintenance on the TOW and DRAGON missile
systems, trainers, nightsights, battery chargers and system peculiar test and check-out
equipment.

31C Operates single channel radio, radio teletype and satellite equipment.

518 Perform general and heavy carpentry and masonry duties in fabrication, erection,
maintenance and repair of wooden and masonry structures and articles.

54E Performs NBC reconnaissance and operates and maintains identification/detection and
decontamination equipment.

558 Supervises, performs or assists in storage, receipt issue, stock control, accounting and
maintenance operations involving ammunition, amnunition components and explosives.

6Z_ Performs and supervises organizational maintenance and recovery operations on light wheel
vehicles (prime movers designated as five to or less and their associated trailers).
Troubleshoots and performs unit maintenance on internal combustion engines and accessories,
powertrain and chassis components.

64C Supervises or operates wheel vehicles to transport personnel and cargo.

67 Supervises, inspects or performs maintenance on .ility helicopters, excluding repair of
systems components. Assists in organizational, direct and general support (aviation unit,
intermediate and depot) maintenance of utility helicopters.

7"IL Supervises or performs administrative, clerical and typing duties.

76W Supervises or receives, stores, account and cares for, dispenses, Issues and ships bulk or
packaged petroleurm, oils and lubricants (POL) products.

76Y Supervises or performs duties involving request, receipt, storage issue, accounting for and
preservation of individual, organizational, installation, and expendable supplies and

equipment in a unit.

91A Supervises dispensary or field medical facilities, administers emergency medical treatment
to battlefield casualties, assists with in-patient and out-patient care and treatment, and
assists with technical and administrative management of medical treatment facilities.

948 Supervises or prepares and cooks food in field, garrison or central food preparation
activities.

958 Sun.vises or provides law enforcement activities, preserves military control, controls
traffic, quells disturbances, protects property and personnel, handles prisoners of war,
refugees or evacuees, and investigates incidents.

Source: adapted from Hough and Ashworth (1986)
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Table B-1. ASVAB/Project A Composites and Rellabilitles

Code Predictor/Composite Reliabilitya

ASVAB subtests
GS General Science 0.86
AR Arithmetic Reasoning 0.91
NO Numerical Operations 0.78
CS Coding Speed 0.85
AS Auto Shop Information 0.87
MK Mathematical Knowledge 0.87
MC Mechanical Comprehension 0.85
EI Electronics Information 0.82
PC Paragraph Comprehension 0.81
WK Word Knowledge 0.92

Paper-and-pencil spatial composite-b
SPAT Spatial composite 0.71

Perceptual-psychomotor compositesc
CPAC Complex perceptual accuracy composite 0.62
CPSP Complex perceptual speed composite 0.95
NMSA Number speed and accuracy 0.84
PSYM Psychomotor composite 0.82
SRAC Simple reaction accuracy composite 0.52
SRSP Simple reaction speed composite 0.88

Job orientation composites (JOBd
AUTO Autonomy composite 0.50
SUPP Organizational & Co-worker Support 0.67
ROUT Routine composite 0.46

Temperament and biodata composites (ABLE) e

ADJU Adjustment composite 0.74
DEPN Dependability composite 0.76
COND Physical condition composite 0.85
SURG Achievement orientation composite 0.78

Interest composites (AVOICE) e

AUDI Audiovisual interest composite 0.74
COMB Combat interest composite 0.78
FSER Food service interest composite 0.67
PSER Protective service interest composite 0.76
TECH Technical interest composite 0.75
MACH Machinery interest composite 0.79

Note: a ASVAB reliabilities reported in McLaughlin, et al. (1984), p. 9, Project A reliabilities
reported in 1985 Report.

b Test-retest reliability (N = 468 to 487).
c Odd-even reliability.
d Internal consistency reliability (alpha).

e Test-retest reliabilities (N=389 to 412).
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TABLE B-2: ARMY COMPOSITES COMPUTED FROM ASVAB TEST SCORES

Code Composite ASVAB Test Formula

AF 'T ArmFZ Forces Qualifl:ation Test AR + NO/2 + VE
CLER Clerical VE + NO + CS
CO Combat CS + AR + MC + AS
ELEC Electronics AR + MX + EI + GS
FA Field Aitillery CS + AR + MC + MK
GM General Maintenance MK + EI + GS + AS
OF Operators and Food NO + VE + MC + AS
MM Mechanical Maintenance NO + EI + MC + AS
SC Surveillance and Communications NO + CS + VE + AS
ST Skilled Technician VE + MK + MC + GS

Source: Maier & Grafton (1981)
Note. The AA composites were normed against the 1980 Youth
Reference Population to have a mean of 100 and standard
deviation of 20

TABLE B-3: PROJECT A PREDICTOR CONSTRUCTS & MEASURES

Construct Composites, Tests & Scales

Spatial Visualization Cognitive paper-and-pencil
& Orientation Assembling Objects; Object

Rotation; Maze Test; Path Test;
Orientation Test

Perceptual/Psychomotor Computer-Administered
Complex perceptual speed; Complex
perceptual accuracy; Number memory;
Target Identification; Target
Tracking; Target Shoot; Cannon
Shoot; Simple Reaction Time; Choice
Reaction Time

Temperament/Personality Assessment of Background & Life
Experiences (ABLE)
Adjustment; Dependability;
Achievement Orientation; Physical
condition

Vocational Interest Army Vocational Interest Career
Examination (AVOICE)
Audiovisual interest; Combat
interest; Protective service;
Machinery interest; Food service
interest; Technical interest

Job Reward Job Orientation Blank (JOB)
Organizational & co-worker support;
Autonomy; Routine work

Source: adapted from Campbell (1987)
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APPENDIX C CRITERION MEASURES

TABLE C-i: PROJECT A CRITERION COMPONENTS AND RELIABILITIES

Code Criterion Component Reliability

CTP MOS specific core technical skills 0.85
GSP General skills proficiency 0.85
ELS Effort, Leadership and Self-development 0.80
MPD Personal Discipline 0.80
PFB Physical Fitness & Military Bearing 0.80

a Source: Zeidner (1987)

TABLE C-2: DESCRIPTIONS OF CRITERION MEASURES

Code Description

CTP Individual proficiency in tasks which are central to NOS, i.e. core tasks which are

a job's primary definers across MOS.
Measured by: A total, standardized score from the within method sun of core content
job knowledge and job sample tests.

GSP Individual proficiency in general or conmon tasks across MOS, e.g., first aid, use
of basic weapons, etc.
Mieasured by: A total, standardized factor score from the within-method sun of
general task scales.

ELS The degree to which the individual exerts effort over the full range of job tasks,

perseveres under adverse or dangerous conditions, and demonstrates leadership or
support towards peers. Assesses general dependability, judgment and perseverance.
Measured by: Five scales from the Army-wide Behaviorally Anchored Rating Scale (BARS)
(general technical performance, leadership, effort, self- development and general
maintenance); expected combat performance scales; MOS-specific BARS scales; and the
total of commendtions/awards.

MPD Adherence to Army regulations and traditions, personal self- control,

responsibility in day-to-day Behavior, and personal discipline.
Measured by: Three Army-wide BARS scales (adherence to traditions and regulations,
self control, integrity); combat rating scale; and tw- indices from aministrative
records (no. of disciplinary actions & promotion rete).

PFB Appropriate military appearance and good physical condition.

Measured by: Physical fitness qualification score from personnel records and
"military bearing and appearance" rating scale.

Source: Descriptions adapted from Campbell (1987)
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TABLE C-3: MF-AN CRITERION CONSTRUCT WEIGHTS BY OFFICERS FOR
19 MOS USING THE CONJOINT METHOD

General os Leadership Personal ilitary
MOS Skills Skills & Effort Discipline Bearing

liB 18.5 22.9 29.1 17.2 12.3
12B 19.7 18.4 30.2 20.3 11.5
13B 19.2 22.7 27.7 18.3 12.1
16S 16.3 25.9 26.3 20.2 11.4
19E 21.1 29.4 20.5 19.5 11.0
27E 18.0 24.2 22.4 23.0 12.4
31C 20.3 29.0 22.0 17.3 11.4
51B 17.2 25.6 25.6 19.7 11.9
54E 21.5 25.4 20.7 19.8 12.6
55B 19.5 22.4 27.8 19.5 10.8
63B 18.1 27.5 23.5 21.1 9.9
64C 22.8 26.1 21.8 15.4 14.0
67N 15.9 25.9 25.3 22.2 10.6
71L 19.9 24.1 22.7 21.0 12.3
76W 17.2 23.6 25,0 22.9 11.4
76Y 21.7 25.7 19.8 17.5 15.3
91A 16.6 26.9 23.1 22.5 11.0
94B 17.4 24.5 26.2 20.9 11.0
95B 27.8 20.0 20.5 19.1 12.6

Source: Saddaca, Campbell, White and DiFazio (1988)
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TABLE D-1: 1980 YOUTH POPULATION ASVAB INTERCORREIATIONS
(see Appendix B for code names)

GS AR NO CS AS MK MC EI VE

GS 1.00 .72 .52 .45 .64 .69 .70 .76 .80
AR .72 1,00 .63 .51 .53 .83 .69 .66 .73
NO .52 .63 1.00 .70 .30 .62 .40 .41 .62
CS .45 .51 .70 1.00 .22 .52 .34 .34 .57
AS .64 .53 .30 .22 1.00 .41 .74 .75 .52
MK .69 .83 .62 .52 .41 1.00 .60 .59 .70
MC .70 .69 .40 .34 .74 .60 1.00 .74 .60
EI .76 .66 .41 .34 .75 .59 .74 1.00 .67
WE .80 .73 .62 .57 .52 .70 .60 .67 1.00

Source: Army Research Institute, Project A, 13 July 1988

TABLE D-2: POPULATION PREDICTOR INTERCORRELATIONS
(see Appendix B for code names)
PREDICTORS 1-8

GS AR NO CS AS MK MC El
JS 1.0000 0.7200 0.5200 0.4500 0.6400 0.6900 0.7000 0.7600
AV 0.7200 1.0000 0.6300 0.5100 0.5300 0.8300 0.6900 0.6600
PO 0.5200 0.6300 1.0000 0.7000 0.3000 0.6200 0.4000 0.4100
CS 0.4500 0.5100 0.7000 1.0000 0.2200 0.5200 0.3400 0.3400
AS 0.6400 0.5300 0.3000 0.2200 1.0000 0.4100 0.7400 0.7500
MK 0.6900 0.8300 0.6200 0.5200 0.4100 1.0000 0.6000 0.5900
MC 0.7000 0.6900 0.4000 0.3400 0.7400 0.6000 1.0000 0.7400
El 0.7600 0.6600 0.4100 0.3400 0.7500 0.5900 0.7400 1.0000
VE 0.8000 0.7300 0.6200 0.5700 0.5200 0.7000 0.6000 0.6700
SPAT 0.6707 0.7301 0.5162 0.4877 0.567 0.6802 0.7413 0.6159
CPAC 0.3166 0.3560 0.3047 0.3155 0.2084 0.3485 0.2775 0.2749
CPSP 0.3170 0.2876 0.3119 0.2953 0.2427 0.2811 0.3005 0.2617
NMSA 0.5895 0.7156 0.6966 0.5545 0.3938 0.6774 0.4914 0.4996
PSYM 0.4459 0.4383 0.3249 0.2920 0.4586 0.3841 0.5479 0.4544
SRAC 0.2136 0.2179 0.1653 0.1703 0.1901 0.1861 0.2100 0.2023
SRSP 0.2169 0.2283 0.2646 0.2534 0.1385 0.2146 0.1892 0.1766
AUTO 0.2486 0.2261 0.1849 0.1562 0.2227 0.1953 0.2203 0.2393
SUPP 0.1383 0.1196 0.1739 0.1745 0.0436 0.1294 0.0584 0.0938
RcUT -0.3150 -0.3021 -0.2525 -0.2355 -0.2507 -0.2620 -0.2898 -0.2737
ADJU 0.2256 0.2399 0.1925 0.1338 0.2048 0.2147 0.2261 0.2259
DEPM 0.0522 0.1017 0.1350 0.1520 -0.0384 0.1450 0.0162 0.0330
CON -0.0462 -0.0322 -0.0048 -0.0387 -0.0147 -0.0269 -0.0123 -0.0348
SURG 0.2076 0.2533 0.2371 0.2020 0.1593 0.2393 0.1903 0.2003
AUDI 0.0147 0.0022 0.0058 0.0221 -0.0909 0.0482 -0.0184 -0.0171
COMB 0.1539 0.0660 -0.0309 -0.0663 0.3433 0.0120 0.2594 0.2220
FSER -0.2097 -0.1852 -0.1295 -0.1199 -0.2366 -0.1408 -0.2317 -0.2179
PSER -0.0990 -0.1426 -0.1365 -0.1275 0.0101 -0.1601 -0.0577 -0.0580
TECH -0.0039 0.0629 0.1116 0.0783 -0.1353 0.1275 -0.0575, -0.0342
MACH -0.1545 -0.1908 -0.2822 -0.2951 0.1864 -0.2210 0.0465 0.0075
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TABLE D-2 (CONT.): POPULATION PREDICTOR
INTERCORRELATIONS

PREDICTORS 9-16
VE SPAT CPAC CPSP YASA PSYN SRAC SRSP

GS 0.8000 0.6707 0.3166 0.3170 0.5895 0.4.59 0.2136 0.2169
AR 0.7300 0.7301 0.3560 0.2876 0.7156 0.4383 0.2179 0.2283
NO 0.6200 0.5162 0.3047 0.3119 0.S966 0.3249 0.1653 0.2646
Cs 0.5700 0.4877 0.3155 0.2953 0.3545 0.2920 0.1703 0.2534
AS 0.5200 0.5677 0.2084 0.2427 0.3938 0.4586 0.1901 0.1385
K)K 0.7000 0.6802 0.3485 0.2811 0.6774 0.3841 0.1861 0.2146
MC 0.6000 0.7413 0.2775 0.3005 0.4914 0.5479 0.2100 0.1892
El 0.6700 0.6159 0.2749 0.2617 0.4996 0.4544 0.2023 0.1766
YE 1.0000 0.6234 0.3678 0.2783 0.6498 0.3773 0.2312 0.2288
SPAT 0.6234 1.0000 0.3886 0.4057 0.6143 0.6040 0.2311 0.2569
CPAC 0.3678 0.3886 1.0000 -0.2025 0.3000 0.2477 0.2284 0.0695
CPSP 0.2783 0.4057 -0.2025 1.0000 0.4129 0.3768 0.0642 0.3716
NNSA 0.6498 0.6143 0.3000 0.4129 1.0000 0.4413 0.1983 0.3023
PSYM 0.3773 0.6040 0.2477 0.3768 0.4413 1.0000 0.1434 0.2696
SRAC 0.2312 0.2311 0.2284 0.0642 0.1983 0.1434 1.0000 0.1200
SRSP 0.2288 0.2569 0.0695 0.3716 0.3023 0.2696 0.1200 1.0000
AUTO 0.2602 0.2039 0.0566 0.1009 0.1890 0.1371 0.0368 0.0681
SUPP 0.2090 0.0978 0.0886 0.0516 0.1497 0.0528 0.0561 0.0635
ROUT -0.3420 -0.2974 -G.1429 -0.1408 -0.2577 -0.2091 -0.0919 -0.1225
ADJU 0.2315 0.2258 0.1227 0.1186 0.2093 0.1934 0.0694 0.1149
DEPW 0.0889 0.0561 0.1070 -0.0034 0.0990 -0.0230 0.0245 0.0250
COND -0.0556 -0.0352 -0.0547 0.0688 0.0062 0.0990 -0.0456 0.0477
SURG 0.2392 0.2023 0.1246 0.0997 0.2301 0.1352 0.0498 0.0991
AUDI 0.0507 0.0032 0.0199 0.0052 -0.0293 -0.0L24 -0.0241 -0.0152
CO*4B 0.0435 0.1737 0.0135 0.0728 0.0276 0.2522 0.0092 0.0196
FSER -0.1939 -0.2148 -0.0924 -0.1278 -0.1650 -0.2282 -0.0718 -0.1014
PSER -0.1356 -0.0907 -0.0818 0.0008 -0.1145 0.0214 -0.0293 -0.0071
TECH 0.0483 -0.0134 0.0601 -0.0156 0.0688 -0.0316 -0.0292 0.0116
MACH -0.2955 -0.0620 -0.1171 -0.0538 -0.2163 0.0616 -0.0653 -0.0809

TABLE D-2 (CONT.)
PREDICTORS 17-24
AUTO SUPP ROUT ADJU DEPW COND SURG AUDI

GS 0.2486 0.1383 -0.3150 0.2256 0.0522 -0.0462 0.2076 0.0147
AR 0.2261 0.1196 -0.3021 0.2399 0.1017 -0.0322 0.2533 0.0022
NO 0.1849 0.1739 -0.2525 0.1925 0.1350 -0.0048 0.2371 0.0058
CS 0.1562 0.1745 -0.2355 0.1338 0.1520 -0.0387 0.2020 0.0221
AS 0.2227 0.0436 -0.2507 0.2048 -0.0384 -0.0147 0.1593 -0.0909
MK 0.1953 0.1294 -0.2620 0.2147 0.1450 -0.0269 0.2393 0.0482
mC 0.2203 0.0584 -0.2898 0.2261 0.0162 -0.0123 0.1903 -0.0184
El 0.2393 0.0938 -0.2737 0.2259 0.0330 -0.0348 0.2003 -0.0171
VE 0.2602 0.2090 -0.3420 0.2315 0.0889 -0.0556 0.2392 0.0507
SPAT 0.2039 0.0978 -0.2974 0.2258 0.0561 -0.0352 0.2023 0.0032
CPAC 0.0566 0.0886 -0.1429 0.1227 0.1070 -0.0547 0.1246 0.0199
CPSP 0.1009 0.0516 -0.1408 0.1186 -0.0034 0.0688 0.0997 0.0052
NHSA 0.1890 0.1497 -0.2577 0.2093 0.0990 0.0062 0.2301 -0.0293
PSYM 0.1371 0.0528 -0.2091 0.1934 -0.0230 0.0990 0.1352 -0.0224
SRAC 0.0368 0.0561 -0.0919 0.0694 0.0245 -0.0456 0.0498 -0.0241
SRSP 0.0681 0.0635 -0.1225 0.1149 0.0250 0.0477 0.0991 -0.0152
AUTO 1.0000 0.2877 -0.1530 0.1069 0.0051 0.0531 0.2010 0.1033
SUPP 0.2877 1.0000 -0.2384 0.1163 0.2542 0.05a4 0.3358 0.1682
ROUT -0.1530 -0.2384 1.0000 -0.1912 -0.0363 -0.0653 -0.2435 -0.0059
ADJU 0.1069 0.1163 -0.1912 1.0000 0.3414 0.2268 0.6038 0.0622

OEPN 0.0051 0.2542 -0.0363 0.3414 1.0000 0.1279 0.5971 0.1924
CONO 0.0531 0.0584 -0.0653 0.2268 0.1279 1.0000 0.3410 0.0622
SURG 0.2010 0.3358 -0.2435 0.6038 u.59 7 1 0.3410 1.0000 0.1838
AUDI 0.1033 0.1682 -0.0059 0.0622 0.1924 0.0622 0.1838 1.0000
CCB 0.1373 0.0294 -0.0808 0.1666 -0.0298 0.1537 0.1868 0.1781
FSER -0.0944 -0.0527 0.2245 -0.0707 0.0489 -0.0341 -0.0412 0.3074
PSER 0.0002 0.0635 0.0482 0.0392 0.0340 0.1304 0.0790 0.1378
TECH 0.0684 0.2415 0.0084 0.1489 0.3069 0.0869 0.2955 0.6719
MACH 0.0138 -0.0697 0.1119 0.0014 -0.1022 0.1296 0.0076 0.2014
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TABLE D-2 (CONT.): POPULATION PREDICTOR
INTERCORRELATIONS

PREDICTORS 25-29
COMB FSER PSER TECH MACH

GS 0.1539 -0.2097 -0.0990 -0.0039 -0.1545
AR 0.0660 -0.1852 -0.1426 0.0629 -0.1908
NO -0.0309 -0.1295 -0.1365 0.1116 -0.2822
CS -0.0663 -0.1199 -0.1275 0.0783 -0.2951
AS 0.3433 -0.2366 0.0101 -0.1353 0.1864
MK 0.0120 -0.1408 -0.1601 0.1275 -0.2210
MC 0.2594 -0.2317 -0.0577 -0.0575 0.0465
El 0.2220 -0.2179 -0.0580 -0.0342 0.0075
'E 0.0435 -0.1939 -0.1356 0.0483 -0.2955
SPAT 0.1737 -0.2148 -0.0907 -0.0134 -0.0620
CPAC 0.0135 -0.0924 -0.0818 0.0601 -0.1171
CPSP 0.0728 -0.1278 0.0008 -0.0156 -0.0538
WNSA 0.0276 -0.1650 -0.1145 0.0688 -0.2163
PSYM 0.2522 -0.2282 0.0214 -0.0316 0.0616
SRAC 0.0092 -0.0718 -0.0293 -0.0292 -0.0653
SRSP 0.0196 -0.1014 -0.0071 0.0116 -0.0809
AUTO 0.1373 -0.094 0.0002 0.0684 0.0138
SUPP 0.0294 -0.0527 0.0635 0.2415 -0.0697
ROJT -0.0808 0.2245 0.0482 0.0084 0.1119
ADJU 0.1666 -0.0707 0.0392 0.1489 0.0014
DEPM -0.0298 0.0489 0.0340 0.3069 -0.1022
COND 0.1537 -0.0341 0.1304 0.0869 0.1296
SURG 0.1868 -0.0412 0.0790 0.2955 0.0076
AUDI 0.1781 0.3074 0.1378 0.6719 0.2014
COMB 1.0000 0.0864 0.3913 0.1905 0.5881
FSER 0.0864 1.0000 0.1708 0.3518 0.2269
PSER 0.3913 0.1708 1.0000 0.2216 0.3364
TECH 0.1905 0.3518 0.2216 1.0000 0.2118
MACH 0.5881 0.2269 0.3364 0.2118 1.0000

TABLE D-3: PREDICTOR VALIDITY COEFFICIENTS FOR 19 MOS
USING SINGLE (CTP) CRITERION

PREDICTORS 1-8
GS AR NO CS AS MK MC El

OS
1 0.6474 0.6285 0.5424 0.4772 0.4808 0.6309 0.5561 0.5711
2 0.6895 0.6255 0.4760 0.3488 0.5842 0.6285 0.6265 0.6536
3 0.4179 0.3814 0.3386 0.2657 0.4336 0.3251 0.3897 0.3833
4 0.4960 0.5481 0.4003 0.3978 0.3307 0.5517 0.4020 0.3993
5 0.6123 0.5318 0.4251 0.3451 0.4856 0.5476 0.5301 0.5492
6 0.6587 0.6195 0.6300 0.5674 0.5174 0.5688 0.5604 0.6152
7 0.4723 0.5421 0.3194 0.1876 0.3727 0.5271 0.4452 0.4761
8 0.7057 0.6665 0.72& 0.6146 0.5683 0.6565 0.6588 0.5572
9 0.5859 0.6141 0.4297 0.3863 0.4947 0.5936 0.5133 0.5603

10 0.4819 0.4067 0.3632 0.3585 0.3731 0.3643 0.4531 0.4325
11 0.4660 0.4143 0.2207 0.2500 0.5822 0.3545 0.5521 0.5134
12 0.2972 0.3480 0.0885 0.0819 0.3786 0.3209 0.4033 0.3495
13 0.3958 0.3876 0.2425 0.2096 0.3495 0.3895 0.4042 0.4161
14 0.4517 0.5286 0.3734 0.3276 0.2269 0.5674 0.3453 0.3253
15 0.7178 0.6852 0.4269 0.4707 0.7020 0.6392 0.7028 0.6818
16 0.5710 0.6108 0.4197 0.4012 0.4416 0.6335 0.4854 0.5559
17 0.4682 0.4395 0.3757 0.4378 0.3897 0.4701 0.4124 0.4189
18 0.5546 0.6800 0.5202 0.5034 0.3976 0.6157 0.4891 0.4755
19 0.3057 0.3562 0.3345 0.2795 0.2316 0.3607 0.2710 0.3117
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TABLE D-3 (CONT.): PREDICTOR VALIDITY COEFFICIENTS FOR
19 MOS USING CTP CRITERION

PREDICTORS 9-16
VE SPAT CPAC CPSP RNSA PSYM SRAC SRSP

Mos
1 0.6361 0.6646 0.3630 0.3415 0.5357 0.4177 0.2229 0.2483
2 0.6584 0.6217 0.3127 0.2198 0.5008 0.3574 0.1782 0.1816
3 0.4072 0.4817 0.2669 0.2163 0.3855 0.3377 0.1300 0.2321
4 0.4864 0.544 0.3132 0.1611 0.4858 0.4078 0.0871 0.1181
5 0.5398 0.5841 0.3791 0.2182 0.5249 0.3569 0.2296 0.1966
6 0.6547 0.5230 0.3041 0.2643 0.5701 0.4099 0.1813 0.1580
7 0.4437 0.4493 0.2642 0.1076 0.4203 0.2766 0.0926 0.1154
8 0.7119 0.7750 0.5240 0.1402 0.6348 0.4727 0.1465 0.2465
9 0.5425 0.5921 0.3127 0.2333 0.5284 0.3685 0.2311 0.1295

10 0.5438 0.5080 0.3242 0.1341 0.3653 0.4061 0.2264 0.1407
11 0.3755 0.5238 0.1494 0.2356 0.3101 0.3578 0.1643 0.1850
12 0.2284 0.4006 0.2394 0.1842 0.2639 0.2504 0.1542 0.0858
13 0.3595 0.4551 0.2167 0.0433 0.2940 0.2838 0.0930 0.0473
14 0.4752 0.5188 0.3649 0.1403 0.4078 0.2740 0.1775 0.1540
15 0.6940 0.7169 0.3085 0.3548 0.6012 0.5001 0.3682 0.1713
16 0.5772 0.5423 0.3185 0.1671 0.5631 0.2525 0.2379 0.2133
17 0.4361 0.5034 0.2270 0.1912 0.4151 0.3101 0.1525 0.1563
18 0.6117 0.6485 0.4664 0.2430 0.6001 0.3161 0.3066 0.2250
19 0.3283 0.3737 0.2396 0.1293 0.3444 0.2507 0.1044 0.0085

TABLE D-3 (CONT.)
PREDICTORS 17-24
AUTO SUPP ROUT ADJU DEPN COND SURG AUSI

OS
1 0.2029 0.1417 -0.2976 0.2241 0.1675 0.0355 0.2971 0.0138
2 0.2236 0.1086 -0.3019 0.1965 0.0468 -0.0279 0.2150 0.0027
3 0.2656 0.1736 -0.2510 0.1917 0.0497 -0.0176 0.1446 -0.0212
4 3.0913 0.2579 -0.2668 0.1891 0.1212 -0.0784 0.1987 -0.0031
5 0.1437 0.1220 -0.3169 0.2173 0.1464 -0.0789 0.2190 0.0394
6 0.1761 0.1336 -0.2332 0.1702 0.0216 -0.1478 0.1596 -0.1034
7 0.0520 0.0593 -0.08 1 0.1230 0.1334 -0.0629 0.1452 0.1179
8 0.1099 0.0981 -0.3567 0.3214 0.3029 -0.0534 0.2961 -0.0262
9 0.1900 0.0601 -0.2076 0.2486 0.1513 -0.0914 0.2765 -0.0604

10 0.0855 0.1066 -0.2784 0.1898 -0.0231 -0.0866 0.1474 -0.0505
11 0.2154 0.0515 -0.1793 0.1985 0.0490 -0.0690 0.1856 -0.1102
12 0.1567 0.1009 -0.1231 0.0883 0.0743 -0.0542 0.0869 -0.0366
13 0.0976 0.0658 -0.1656 0.1738 0.1873 -0.0324 0.1981 0.0456
14 0.1172 0.0979 -0.2154 0.1918 0.2025 -0.0639 0.2538 0.0972
15 0.1875 0.2016 -0.3495 0.2841 0.1341 -0.0620 0.3185 0.0067
16 0.1370 0.2451 -0.2708 0.1720 0.1494 -0.0880 0.2355 0.0266
17 0.1292 0.1801 -0.1344 0.1946 0.2358 -0.1032 0.2250 0.0220
18 0.1909 0.2071 -0.2565 0.1989 0.1634 -0.1225 0.2446 0.0583
19 0.0748 0.1222 -0.1689 0.1790 0.1661 0.0046 0.1987 -0.0833

D-6



TABLE D-3 (CONT.)
PREDICTORS 25-29
C048 FSER PSER TECH MACH

1 0.1850 -0.2557 -0.0926 0.0542 -0.1439
2 0.1654 -0.1917 -0.1648 -0.0114 -0.0936
3 0.2440 -0.1549 -0.0493 -0.0094 0.0528
4 0.1297 -0.1199 -0.049 0.0668 -0.1336
5 0.2227 -0.1647 -0.0257 0.1130 -0.0484
6 0.1615 -0.2151 -0.24,7 -0.0292 -0.0948

7 0.1080 -0.0353 0.0471 0.1494 0.0729
8 0.2771 -0.1456 -0.2356 0.0840 -0.0162
9 0.1226 -0.1519 -0.1669 0.0065 -0.0654

10 0.1853 -0.1257 -P.IZ54 -0.0740 -0.0022
11 0.3035 -0.1900 -0.0830 -0.0954 0.2673
12 0.1551 -0.15i? -1.0357 -0.0283 0.1084
13 0.1159 -0.0768 0.0643 G.0811 -0.0405
14 0.0180 -0.1184 -0.0396 0.1456 -0.1873
15 C.1575 -0.202, -0.1461 0.0837 -0.0484
16 -0.0168 -0.1834 -0.2037 0.0817 -0.1650
17 0.1873 -'J.0870 -0.0321 0.0313 -0.0122
18 -0.0347 -0.0094 -0.1154 0.1022 -0.2367
19 0.0169 -0.1321 -0.0308 -0.0117 -0.1340
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APPENDIX E

ANALYSIS SAMPLE GENERATION AND DATA
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I. PROCEDURE FOR GENERATING ANALYSIS SAMPLE

a. Notation
N = number of entities in an MOS sample
n = number of test variables (j=l...29)
m = number of jobs (i=1... 19)
Rt = 29x29 matrix of predictor intercorrelations
V = m x 29 matrix of validity coefficients
X. = N x 30 matrix of random normal deviates for the

mth job sample

b. Compute for each of the 19 job samples, 29 synthetic
test scores and 1 criterion score using the Gramian
f actor solution of Rtv- as the transformation matrix.
b.l Fi = Rtv i (A D1 /2 A')

where,
Fi 30x30 transformation matrix for the ith

job sample
Rtv, matrix of 29 test intercorrelations in

rows and columns 1-29 plus vectors of 29
validities in 30th row and column for
the ith job;
R, 1,vi

vi I 1.0
A = eigenvectors of 30x30 intercorrelation-

validity matrix
D = diagonal matrix of eigenvalues of

intercorrelation-validity matrix

b.2 Yi= XN Fi'
where,
Yi = Nx30 matrix of test and criterion scores

(with the same expected parameters as
the population) for N entities in the
ith job sample.

c. Compute matrix of sums-of-squares and cross-products,
Qi=Yi,Yi , for each job sample.

d. Compute the vector of covariances, Ci, for each job
sample.
d.1 Identify qi, the 30th row of Qi.

d.2 m, = (I'Yi)l/N
where,
mi  = row vector of means of 29 predictors and

E-3



1 criteria (1x30)
1 = summing vector of is

d.3 ci = (1/N)q - (mik mi) ; and drop the 30th
element.

where,
Mi = a scalar which is the 30th element of

mi.
ci = ix29 vector of covariances of the

predictors

e. Compute analysis sample validity matrix (Va) using 19
Cis.
e.l For each job sample, compute validities for 29

predictors: vi =Si "1 /2 ) ci (I/si)
where,
vai= 1x29 vector of validities between 29

predictors and 1 criterion variable for
each job sample

Si = diagonal matrix (taken from Qi) with the
variances of the 29 predictors and I job
sample criterion in the diagonal

si  = scalar which is the covariance of the
criterion for the ith job sample; it is
tha 30th element of the matrix Si

e.2 Assemble 19x29 validity matrix (Va) for combined
job sample0L using vai.

Va = (valI ' va2 ,, . * Va191 P

f. Compute analysis sample intercorrelation matrix (Ra)
f.l Drop criterion variable from 19 Qis.

f.2 Sum the 19 Qis weighted by sample size:
Qt = Zi a119 Ni Qi

f.3 Compute analysis sample intercorrelation matrix:
a. mt= [7i 119 Ni(mi) ] i/Zi =119 Ni
b. Ct = Qt (i/Zi =119 Ni) - mt' (mt)

where,
Ct = combined covariance matrix for the

29 job samples
Qt = combined sums-of-squares and cross-

products matrix for the 19 job
samples

c. R -~1/2 ct 1/C. Ra  =S " /  Ct S" /

where,
S = diagonal matrix of the diagonal elements

of Ct (i.e., predictor variances).
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TABLE E-1: SEEDS USED TO GENERATE MATRIX OF RANDOM
NORMAL DEVIATES (X.) FOR ANALYSIS SAMPLE

X. for mth
MOS sample Seed

Xl 4230175544 - INITIAL SEED
X2 1430478015
X3 374314139
X4 823870838
X5 1177510215
X6 379516625
X7 1042803379
X8 911214433
X9 2071236145
X10 149236351
X1I 613354435
X12 1210466674
X13 1144093513
X14 1732279920
XI5 318522932
X16 1220158268
X17 1583150165
X18 1342521.610
X19 1463079165

TABLE E-2: ANALYSIS SAMPLE PREDICTOR INTERCORRELATIONS
(see Appendix B for code names)

PREDICTORS 1-9
GS AR NO CS AS MK MC El VE

GS 1.0000 0.7200 0.5200 0.4500 0.6400 0.6900 0.7000 0.7600 0.8000
AR 0.7200 1.0000 0.6300 0.5100 0.5300 0.8300 0.6900 0.6600 0.7300
NO 0.5200 0.6300 1.0000 0.7000 0.3000 0.6200 0.4000 0.4100 0.6200
CS 0.4500 0.5100 0.7000 1.0000 0.2200 0.5200 0.3400 0.3400 0.5700
AS 0.6400 0.5300 0.3000 0.2200 1.0000 0.4100 0.7400 0.7500 0.5200
MK 0.6900 0.8300 0.6200 0.5200 0.4100 1.0000 0.6000 0.5900 0.7000
MC 0.7000 0.6900 0.4000 0.3400 0.7400 0.6000 1.0000 0.7400 0.6000
El 0.7600 0.6600 0.4100 0.3400 0.7500 0.5900 0.7400 1.0000 0.6700
VE 0.8000 0.7300 0.6200 0.5700 0.5200 0.7000 0.6000 0.6700 1.0000
SPAT 0.6707 0.7301 0.5162 0.4877 0.5677 0.6802 0.7413 0.6159 0.6234
CPAC 0.3166 0.3560 0.3047 0.3155 0.2084 0.3485 0.2775 0.2749 0.3678
CPSP 0.3170 0.2876 0.3119 0.2953 0.2427 0.2811 0.3005 0.2617 0.2783
NMSA 0.5895 0.7156 0.6966 0.5545 0.3938 0.6774 0.4914 0.4996 0.6498
PSYM 0.4459 0.4383 0.3249 0.2920 0.4586 0.3841 0.5479 0.4544 0.3773
SRAC 0.2136 0.2179 0.1653 0.1703 0.1901 0.1861 0.2100 0.2023 0.2312
SRSP 0.2169 0.2283 0.2646 0.2534 0.1385 0.2146 0.1892 0.1766 0.2288
AUTO 0.2486 0.2261 0.1849 0.1562 0.2227 0.1953 0.2203 0.2393 0.2602
SUPP 0.1383 0.1196 0.1739 0.1745 0.0436 0.1294 0.0584 0.0938 0.2090
ROUT -0.3150 -0.3021 -0.2525 -0.2.355 -0.2507 -0.2620 -0.2898 -0.2737 -0.3420
ADJU 0.2256 0.2399 0.1925 0.1338 0.2048 0.2147 0.2261 0.2259 0.2315
DEPN 0.0522 0.1017 0.1350 0.1520 -0.0384 0.1450 0.0162 0.0330 0.0889
COND -0.0462 -0.0322 -0.0048 -0.0387 -0.0147 -0.0269 -0.0123 -0.0348 -0.0556
SURG 0.2076 0.2533 0.2371 0.2020 0.1593 0.2393 0.1903 0.2003 0.2392
AUDI 0.0147 0.0022 0.0058 0.0221 -0.0909 0.0482 -0.0184 -0.0171 0.0507
COMB 0.1539 0.0660 -0.0309 -0.0663 0.3433 0.0120 0.2594 0.2220 0.0435
FSER -0.2097 -0.1852 -0.1295 -0.1199 -0.2366 -0.1408 -0.2317 -0.2179 -0.1939
PSER -0.0990 -0.1426 -0.1365 -0.1275 0.0101 -0.1601 -0.0577 -0.0580 -0.1356
TECH -0.0039 0.0629 0.1116 0.0783 -0.1353 0.1275 -0.0575 -0.0342 0.0483
MACH -0.1545 -0.1908 -0.2122 -0.2951 0.1864 -0.2210 0.0465 0.0075 -0.2955
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TABLE E-2 (CONT.): ANALYSIS PREDICTOR CORRELATIONS
PREDICTORS 10-18

SPAT CPAC CPSP NMSA PSYM SRAC SRSP AUTO 5JPP
GS 0.6707 0.3166 0.3170 0.5895 0.4459 0.2136 0.2169 0.2486 0.1383
AR 0.7301 0.3560 0.2876 0.7156 0.4383 0.2179 0.2283 0.2261 0.1196
NO 0.5162 0.3047 0.3119 0.6966 0.3249 0.1653 0.2646 0.1849 0.1739
Cs 0.4877 0.3155 0.2953 0.5545 0.2920 0.1703 0.2534 0.1562 0.1745
AS 0.5677 0.2084 0.2427 0.3938 0.4586 0.1901 0.1385 0.2227 0.0436
MK 0.6802 0.3485 0.2811 0.6774 0.3841 0.1861 0.2146 0.1953 0.1294
mC 0.7413 0.2775 0.3005 0.4914 0.5479 0.2100 0.1892 0.2203 0.0584
El 0.6159 0.2749 0.2617 0.4996 0.4544 0.2023 0.1766 0.2393 0.0938
VE 0.6234 0.3678 0.2783 0.6498 0.3773 0.2312 0.2288 0.2602 0.2090
SPAT 1.0000 0.386 0.4057 0.6143 C.6640 0.2311 0.2569 0.2039 0.0978
CPAC 0.3886 1.0000 -0.2025 0.3000 0.2477 0.2284 0.0695 0.0566 0.0886
CPSP 0.4057 -0.2025 1.0000 0.4129 0.3768 0.0642 0.3716 0.1009 0.0516
NMSA 0.6143 0.3000 1.4129 1.0000 0.4413 0.1983 0.3023 0.1890 0.1497
PSYM 0.6040 0.2477 0.1768 0.413 1.0000 0.1434 0.2696 0.1371 0.0528
SRAC 0.2311 0.2284 0.0642 0.1983 0.1434 1.0000 0.1200 0.0368 0.0561
SRSP 0.2569 0.0695 0.3716 0.302Z 0.2696 0.1200 1.0000 0.0681 0.0635
AUTO 0.2039 0.0566 0.1009 0.1890 0.1371 0.0368 0.0681 1.0000 0.2877
SUPP 0.0978 0.0886 0.0516 0.1497 0.0528 0.G561 0.0635 0.2677 1.0000
ROUT -0.2974 -0.1429 -0.1408 -0.257 -0.2091 -0.0919 -0.1225 -0.1530 -0.2384
ADJU 0.2258 0.1227 0.1186 0.2093 0.1934 0.0690 0.1149 0.1069 0.1163
DEPH 0.0561 0.1070 -0.0034 0.0990 -0.0230 0.0245 0.0250 0.0051 0.2542
CCND -0.0352 -0.0547 00,6,8 00062 0.0990 -0.0456 0.0477 0.0531 0.0584
SURG 0.2023 0.1246 0.09<7 0.2301 0.1352 0.0498 0.0991 0.2010 0.3358
AUDI 0.0032 0.0199 0.0052 -0.0293 -0.0224 -0.0241 -0.0152 0.1033 0.1682
COMB 0.1737 0.0135 0.0728 0.0276 0.2522 0.0092 0.0196 0.1373 0.0294
FSER -0.2148 -0.0924 -0.1278 -0.1650 -0.22&2 -0.0718 -0 1014 -0.0944 -0.0527
PSER -0.0907 -0.0818 0.00G8 -0.1145 0.0214 -0.0293 -0.0071 0.0002 0.0635
TECH -0.0134 0.0631 -0.0156 0.0688 -0.0316 -0.0292 0.0116 0.0684 0.2415
MACH -0.0620 -0.1171 -0.0538 -0.2163 0.0616 -0.065 -0.0809 0.0138 -0.0697

TABLE E-2 (CONT.)
PREDICTORS 19-24

ROUT ADJU DEPN CO O SURG AUSI
GS -0.3150 0.225o 0.0522 -0.0462 0.2076 0.0147
AR -0.3021 0.2399 0.1017 -0.0322 0.2533 0.0022
NO -0.2525 0.1925 0.1350 -0.0048 0.2371 0.0058
CS -0.2355 0.1338 0.1520 -0.0387 0.2020 0.0221
AS -0.2507 0.2048 -0.0384 -0.0147 0.1593 -0.0909
MK -0.2620 0.2147 0.1450 -0.0269 0.2393 0.0482
MC -0.2898 0.2261 0.0162 -0.0123 0.1903 -0.0184
El -0.2737 0.2259 0.0330 -0.0348 0.2003 -0.0171
VE -0.3420 0.2315 0.0889 -0.0556 0.2392 0.0507
SPAT -0.2974 0.2258 0.0561 -0.0352 0.2023 0.0032
CPAC -0.1429 0.1227 0.1070 -0.0547 0.1246 0.0199
CPSP -0.1408 0.1186 -0.0034 0.0688 0.0997 0.0052
NMSA -0.2577 0.2093 0.0990 0.0062 0.2301 -0.0293
PSYM -0.2091 0.1934 -0.0230 0.0990 0.1352 -0.0224
SRAC -0.0919 0.0694 0.0245 -0.0456 0.0498 -0.0241
SRSP -0.1225 0.1149 0.0250 0.0477 0.0991 -0.0152
AUTO -0.1530 0.1069 0.0051 0.0531 0.2010 0.1033
SUPP -0.2384 0.1163 0.2542 0.0584 0.3358 0.1682
ROUT 1.0000 -0.1912 -0.0363 -0.0653 -0.2435 -0.0059
ADJU -0.1912 1.0000 0.3414 0.2268 0.6038 0.0622
DEP4 -0.0363 0.3414 1.0000 0.1279 0.5971 0.1924
COND -0.0653 0.2268 0.1279 1.0000 0.3410 0.0622
SURG -0.2435 0.6038 0.5971 0.3410 1.0000 0.1838
AUDI -0.0059 0.0622 0.1924 0.0622 0.1838 1.0000
CCB -0.0808 0.1666 -0.0298 0.1537 0.1868 0.1781
FSER 0.2245 -0.0707 0.0489 -0.0341 -0.0412 0.3074
PSER 0.0482 0.0392 0.0340 0.1304 0.0790 0.1378
TECH 0.0084 0.1489 0.3069 0.0869 0.2955 0.6719
MACH 0.1119 0.0014 -0.1022 0.1296 0.0076 0.2014
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TABLE E-2 (CONT.): ANALYSIS PREDICTOR CORRELATIONS
PREDICTORS 25-29
CMB FSER PSER TECH MACH

GS 0.1539 -0.2097 -0.0990 -0.0039 -0.1545
AR 0.0660 -0.1852 -0.1426 0.0629 -0.1908
N0 -0.0309 -0.1295 -0.1365 0.1116 -0.2822
CS -0.03 -0.1199 -0.1275 0.0783 -0.2951
AS 0.3433 -0.2366 0.0101 -0.1353 0.1864
14K 0.0120 -0.1408 -0.1601 0.1275 -0.2210
MC 0.2594 -0.2317 -0.0577 -0.0575 0.0465
El 0.2220 -0.2179 -0.0580 -0.0342 0.0075
VE 0.0435 -0.1939 -0.1356 0.0483 -0.2955
SPAT 0.1737 -0.2148 -0.0907 -0.0134 -0.0620
CPAC 0.0135 -0.0924 -0.0818 0.0601 -0.1171
CPSP 0.0728 -0.1278 0.0008 -0.0156 -0.0538
WMSA 0.0276 -0.1650 -0.1145 0.0688 -0.2163
PSYM 0.2522 -0.2282 0.0214 -0.0316 0.0616
SRAC 0.0092 -0.0718 -0.0293 -0.0292 -0.0653
SRSP 0.0196 -0.1014 -0.0071 0.0116 -. 0609
AUTO 0.1373 -0.09"4 0.0002 0.0684 0.0138
SUPP 0.0294 -0.0527 0.0635 0.2415 -0.0697
ROUT -0.0808 0.2245 0.0482 0.0084 0.1119
ADJU 0.1666 -0.0707 0.0392 0.1489 0.0014
DEPN -0.0298 0.0489 0.0340 0.3069 -0.1022
COR(D 0.1537 -0.0341 0.1304 0.0869 0.1296
SURG 0.1868 -0.0412 0.0790 0.2955 0.0076
AUDI 0.1781 0.3074 0.1378 0.6719 0.2014
COMB 1.0000 0.0864 0.3913 0.1905 0.5881
FSER 0.0864 1.0000 0.1708 0.3518 0.2269
PSER 0.3913 0.1708 1.0000 0.2216 0.3364
TECH 0.1905 0.3518 0.2216 1.0000 0.2118
MACH 0.5881 0.2269 0.3364 0.2118 1.0000

TABLE E-3: ANALYSIS SAMPLE VALIDITY COEFFICIENTS FOR 19 NOS
USING THE SINGLE (CTP) CRITER-ION
(see Appendices A & B for code names)

PREDICTORS 1-9
GS AR No CS AS NK MC El VE

NOS
1 0.6474 0.6285 0.5424 0.4772 0.4808 0.6309 0.5561 0.5711 0.6761
2 0.6895 0.6255 0.4760 0.3488 0.5842 0.6285 0.6265 0.6536 0.u581"
3 0.4179 0.3814 0.3386 0.2657 0.4336 0.3251 0.3897 0.3833 0.4072
4 0.4960 0.5481 0.4003 0.3978 0.3307 0.5517 0.4020 0.3993 0.4864
5 0.6123 0.5318 0.4251 0.3451 0.4856 0.5476 0.5301 0.5492 0.5398
6 0.6587 0.6195 0.6300 0.5674 0.5174 0.5688 0.5604 0.6152 0.6547
7 0.4723 0.5421 0.3194 0.1876 0.3727 0.5271 0.4452 0.4761 0.4"37
8 0.7057 0.6665 0.7260 0.6146 0.5683 0.6565 0.6588 0.5572 0.7119
9 0.5859 0.6141 0.4297 0.3863 0.4947 0.5936 0.5133 0.5603 0.5425

10 0.4819 0.4067 0.3632 0.3585 0.3731 0.3643 0.4531 0.4325 0.5438
11 0.4660 0.4143 0.2207 0.2500 0.5822 0.3545 0.5521 0.5134 0.3755
12 0.2972 0,3480 0.0885 0.0819 0.3786 0.3209 0.4033 0.3495 0.2284
13 0.3958 0.3876 0.2425 0.2096 0.3495 0.3895 0.4042 0.4161 0.3595
14 0.4517 0.5286 0.3734 0.3276 0.2269 0.5674 0.3453 0.3253 0.4752
15 0.7178 0.6852 0.4269 0.4707 0.7020 0.6392 0.7028 0.6818 0.6940
16 0.5710 0.6108 0.4197 0.4012 0.4416 0.6335 0.4854 0.5559 0.5772
17 0.4682 0.4395 0.3757 0.4378 0.3897 0.4701 0.4124 0.4189 0.4361
18 0.5546 0.6800 0.5202 0.5034 0.3976 0.6157 0.4891 0.4755 0.6117
19 0.3057 0.3562 0.3345 0.2795 0.2316 0.3607 0.2710 0.3117 0.3283
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TABLE E-3 (CONT.): ANALYSIS VALIDITY COEFFICIMWfS
PREDICTORS 10-18
SPAT CPAC CPSP UHSA PSYM SRAC SRSP AUTO SUPP

NOS
1 0.6646 0.3630 0.3415 0.5357 0.4177 0.2229 0.2483 0.2029 0.1417
2 0.6217 0.3127 0.2198 0.5008 0.3574 0.1782 0.1816 0.2236 0.1086
3 0.4817 0.2669 0.2163 0.3855 0.3377 0.1300 0.2321 0.2656 0.1736
4 0.5444 0.3132 0.1611 0.4858 0.4078 0.0871 0.1181 0.0913 0.2579
5 0.5841 0.3791 0.2182 0.5249 0.3569 0.2296 0.1966 0.1437 0.1220
6 0.5230 0.3041 0.2643 0.5701 0.4099 0.1813 0.1580 0.1761 0.1336
7 0.4493 0.2642 0.1076 0.4203 0.2766 0.0926 0.1154 0.0520 0.0593
8 0.7750 0.5240 0.1402 0.6348 0.4727 0.1465 0.2465 0.1099 0.0981
9 0.5921 0.3127 0.2333 0.5284 0.3685 0.2311 0.1295 0.1900 0.0601
10 0.5080 0.3242 0.1341 0.3653 0.4061 0.2264 0.1407 0.0855 0.1066
11 0.5238 0.1494 0.2356 0.3101 0.3578 0.1643 0.1850 0.2154 0.0515
12 0.4006 0.2394 0.1842 0.2639 0.2504 0.1542 0.0858 0.1567 0.1009
13 0.4551 0.2167 0.0433 0.2940 0.2838 0.0930 0.0473 0.0976 0.0658
14 0.5188 0.3649 0.1403 0.4078 0.2740 0.1775 0.1540 0.1172 0.0979
15 0.7169 0.3085 0.3548 0.6012 0.5001 0.3682 0.1713 0.1875 0.2016
16 0.5423 0.3185 0.1671 0.5631 0.2525 0.2379 0.2133 0.1370 0.2451
17 0.5034 0.2270 0.1912 0.4151 0.3101 0.1525 0.1563 0.1292 0.1801
18 0.6485 0.4664 0.2430 0.6001 0.3161 0.3066 0.2250 0.1909 0.2071
19 0.3737 0.2396 0.1293 0.3444 0.2507 0.1044 0.0985 0.0748 0.1222

TABLE E-3 (CONT.)
PREDICTORS 19-25
RcUT ADJU DEPH COND SURG AUSI ComB

NOS
1 -0.2976 0.2241 0.1675 0.0355 0.2971 0.0138 0.1850
2 -0.3019 0.1965 0.0468 -0.0279 0.2150 0.0027 0.1654
3 -0.2510 0.1917 0.0497 -0.0176 0.1446 -0.0212 0.2440
4 -0.2668 0.1891 0.1212 -0.0784 0.1987 -0.0031 0.1297
5 -0.3169 0.1173 0.1464 -0.0789 0.2190 0.0394 0.2227

6 -0.2332 0.1702 0.0216 -0.1478 0.1596 -0.1034 0.1615
7 -0.0811 0.1230 0.1334 -0.0629 0.1452 0.1179 0.1080
8 -0.3567 0.3214 0.3029 -0.0534 0.2961 -0.0262 0.2771
9 -0.2076 0.2486 0.1513 -0.0914 0.2765 0.0604 0.1226

10 -0.2784 0.1898 -0.0231 -0.0866 0.1474 -0.0505 0.1853
11 -0.1793 0.1985 0.0490 Z..3oyO 0.1856 -G.1102 0.3035
12 -0.1231 0.0883 0.fl743 -0.0542 0.0869 -0.0366 0.1551
13 -0.1656 0.1738 0.1873 -0.0324 0.1981 0.0456 0.1159
14 -0.2154 0.1918 0.2025 -0.0639 0.2538 0.0972 0.0180
15 -0.3495 0.2841 0.1341 -0.0620 0.3185 0.0067 0.1575
16 -0.2708 0.1720 0.1494 -0.0880 0.2355 0.026S -0.0168
17 -0.1344 0.1946 0.2358 -0.1032 0.2250 0.0220 0.1873
18 -0.2565 0.1989 0.1634 -0.1225 0.2446 0.)583 -0.0347
19 -0.1689 0.1790 0.1661 0.0046 0.1987 -0.00'3 0.0169
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TABLE E-3 (CONT.): ANALYSIS VALIDITY COEFFICIENTS
PREDICTORS 26-29
FSER PSER TECH MACH

No~s
1 -0.2557 -0.0926 0.0542 -0.1439
2 -0.1917 -0.1648 -0.0114 -0.0936
3 -0.1549 -0.0493 -0.0094 0.0528
4 -0.1199 -0.0496 0.0668 -0.1336
5 -0.1647 -0.0257 0.1130 -0.0484
6 -0.2151 -0.2447 -0.0292 -0.0948
7 -0.0353 -0.0471 0.1494 0.0729
8 -0.1456 -0.2356 0.0840 -0.0162
9 -0.1519 -0.1669 0.065 -0.0654

10 -0.1257 -0.1254 -0.0740 -0.0022
11 -0.1900 -0.0830 -0.0954 0.2673
12 -0.1512 -0.0357 -0.0283 0.1084
13 -0.0768 -0.0643 0.0811 -0.0405
14 -0.1184 -0.0396 0.1456 -0.1873
15 -0.2026 -0.1461 0.0837 -0.0484
16 -0.1834 -0.2037 0.0817 -0.1650
17 -0.0870 -0.0321 0.0313 -0.0122
18 -0.0094 -0.1154 0.1022 -0.2367
19 -0.1321 -0.0308 -0.0117 -0.1340
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TABLE F-I TEST SELECTION INDEX FORMULAE

Index Formula

Point Distance PDI = Zaj (Z7k,1 (a,, - a*)2) 1/2

Index (PDI) were,
a.. = the elements of factor matrix F with I ro s equat to the
rntIer of jobs wid j columns equal to k, the nuser of selected
tests ptW the %riaL test,
a,* =ni=I ai , where m equals the nuber of jobs.

Horst's Index of Hd 
=  j=I za W (a,, - a,*)2

Differential (defined as above)
Efficiency (Hd)

Modified Point Mod. PDI = Ej=1  (z k ((R'/R)a 1 -a1 * 2) 1 12

Distance Index where,
(Mod. PDI) Ri : (Zkj=1 (aij)2)1/2,

R i=1 RV"

Modified Horst's Mod. Hd = k j=1 (aij (R*/Ri) - a*) 2

Differential Index (defined as above)
(Mod. Hd)

Max-PSE Max-PSE = 1/ Em,=1  (Zk1 1  (a1 )2)1/
(defined as above)
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I. TEST SELECTION RESULTS;
COMPOSITE CRITERION VERSUS CORE TECHNICAL PROFICIENCY

1. Tests and Test Order,

TABLE F-2: ORDER OF TESTS SELECTED - COMPOSITE CRITERION

Tests Selected PDI d Nod. Vod. Max
MPT %a PWS

GS General Science 5 8 8
AR Arithmetic Reasoning 6 7 7 1
NO Number Operations 1 1 7 5 6
CS Coding Speed 3 4 5 3 10
AS Auto Shop 5
MK Math Kno ledge 2 2 6 4 7
SPAT Spatial composite 3
CPSP CompTlex perceptual speed 10
SRAC Simple reaction accuracy 4
ROUT Routine compxosite 7 10 8 6 8
ADJU Adjustment composite 9
DEPH Dependability composite 10 4
COND Physical condition 3
SURG Achievement orientation 2
COMB Ccmbat interest 10 6 9
FSER Food service interest 9 9 9 2
PSER Protective service interest 8 5 2
MACH Machinery interest 4 3 1 1

TABLE F-3: ORDER OF TESTS SELECTED - SINGLE CRITERION (CTP)

Tests Selected FBI Hd Vod. god. Max.
PO1 Hd PSE

AR Arithmetic Reasoning 1
NO Number Operations 1 1 8 2 6
CS Coding Speed 4 5 10 6
AS Auto Shop 2 2 7 4 4
MK Math Knowledge 3 3 9 3 7

VE Verbal 8 8 5 3
SPAT Spatial composite 8 2
CPAC Complex perceptual accuracy 10
CPSP Complex perceptual speed 10 9
SUPP Support ccmposite 10 6
DEPN Dependability ccmposite 2 5
COPB Combat interest 5 7 4 10
PSER Protective service interest 7 6 3 9
TECH Technical interest 9 9 5 7
MACH Machinery interest 6 4 1 1 8

1 The test selection results in this section were obtained
from the corrected Project A data (the universe estimate in this
study). (See Appendix E).
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2. Factor Solutions for "Best" Ten Tests - Composite

PDI No MK CS MACH GS AR ROUT PSER FSER CORS
N0 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
NK .620 .785 .000 .000 .000 .000 .000 .000 .000 .000
Cs .700 .110 .706 .000 .000 .000 .000 .00 .000 .000
MACH -. 2a2 -. 059 -. 129 .949 .000 .000 .000 .000 .000 .000
GS .520 .469 .049 .027 .712 .00 .000 .000 .000 .000
AR .630 .560 .011 .022 .181 .506 .ooo .ooo .ooo .ooo
ROUT -. 52 -. 134 -. 062 .026 -. 166 -. 074 .938 .000 .000 .000
PSER -. 137 -. 096 -. 030 .304 .014 -. 023 -. 009 .937 .000 .000
FSER -.130 -.07 -.029 .192 -.155 -.072 .153 .094 .937 .000
COMB -.031 .040 -.069 .604 .194 .030 -. 073 .216 -.010 .733

HD NO MK MACH CS PSER COMB AR GS FSER ROUT
No 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
1K .620 .785 .000 .000 .000 .000 .000 .000 .000 .000
MACH -. 282 -.059 .958 .000 .000 .000 .000 .000 .000 .000
Cs .700 .110 -.095 .699 .000 .000 .000 .000 .000 .000
PSER -.137 -.096 .305 .011 .937 .000 .000 .000 .000 .000
COMB -.031 .040 .607 .013 .219 .762 .000 .000 .000 .000
AR .630 .560 .021 .014 -.010 .069 .533 .000 .000 .000
GS .520 .469 .021 .052 .011 .178 .219 .654 .000 .000
FSER -.130 -.077 .194 -.003 .092 -.069 -.110 -.114 .949 .000
ROUT -.252 -.134 .034 -.058 -.010 -.133 -.110 -.108 .149 .922

M. PDIAcH PSER CONO SRAC CS 1K NO RUT FSER DEPH

MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
PSER .336 .942 .000 .000 .000 .000 .000 .000 .OCO .000
COND .130 .092 .987 .000 .000 .000 .000 .000 .000 .000
SRAC -.065 -.008 -.037 .997 .000 .000 .000 .000 .000 .000
CS -.295 -.030 .002 .151 .943 .000 .000 .000 .00) .000
MK -.221 -.091 .010 .172 .452 .842 .000 .000 .00(0 .000
NO -.282 -.044 .036 .148 .629 .289 .645 .000 .000 .000
ROYJT .112 .011 -.082 -.088 -.200 -.154 -.053 .952 .OOC .000
FSER .227 .100 -.074 -.059 -.043 -.061 -.008 .177 .945 .000
DEP4 -.102 .073 .136 .023 .127 .078 -.003 .026 .087 .967

M.HD MACH FSER CS MK NO ROUT AR GS ADJU CPSP

MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .0001 .000
FSER .227 .974 .000 .000 .000 .000 .000 .000 .000 .000
CS -.295 -.054 .954 .000 .000 .000 .000 .000 .000 .000
MK -.221 -.093 .471 .849 .000 .000 .000 .000 .000 .000
No -.282 -.067 .643 .293 .646 .000 .000 .000 .000 .000
ROUT .112 .204 -.201 -.146 -.055 .939 .000 .000 .000 .000
AR -.191 -.146 .467 .653 .116 -.059 .530 .000 .X00 .000
GS -.154 -.179 .414 .523 .070 -.104 .217 .660 .300 .000
ADJU .001 -.073 .137 .170 .078 -.128 .072 .050 958 .000
CPSP -.054 -.119 .286 .145 .096 -.028 .035 .115 .028 .925

M-PSE AR SURG SPAT OEPN AS NO MK RCUT C04B CS
AR 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
SURG .253 .967 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .730 .018 .683 .000 .000 .000 .000 .000 .000 .000
DEPH .102 .591 -.042 .799 .000 .000 .000 .000 .000 .000
AS .530 .026 .264 -.121 .796 .000 .000 .000 .000 .000
NO .630 .080 .080 .034 -.067 .765 .000 .000 .000 .000

MK .830 .030 .108 .059 -.065 .104 .529 .000 .000 .000
ROUT -.302 -.173 -.108 .115 -.055 -.062 .001 .920 .000 .000
CCM4B .06 .176 .179 -.166 .297 -.099 -.0'c3 .020 .897 .000
CS .510 .075 .167 .078 -.109 .457 .632 -.041 -.056 .688
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3. Factor Solutions for "Best" Ten Tests - CTP

PDI H0 AS NK CS CCMB MACH PSER YE TECH SUPP
NO 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
AS .300 .954 .G0 .000 .000 .000 .000 .000 .000 .000
K .620 .235 .749 .000 .000 .000 .000 .000 .000 .000
Cs .700 .010 .112 .705 .000 .000 .000 .000 .000 .000
CC;4B -.031 .370 -.074 -.057 .924 .000 .000 .00O .000 .000
MACH -.282 .284 -.151 -.119 .494 .748 .000 .000 .000 .000
PSER -.137 .054 -.118 -.027 .386 .095 .898 .000 .000 .000
VE .620 .350 .312 .138 -.039 -.184 .003 .584 .000 .000
TECH .112 -.177 .133 -.018 .290 .225 .143 .093 .880 .000
SUPP .174 -.009 .032 .070 .048 -.038 .087 .136 .213 .943

HD NO AS MK MACH CS PSER CCMB VE TECH CPSP
No 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
AS .300 .954 .000 .000 .000 .000 .000 .000 .000 .000
NK .620 .235 .749 .000 .000 .000 .000 .000 .000 .000
MACH -.282 .284 -.151 .904 .000 .000 .000 .000 .000 .000
CS .700 .010 .112 -.093 .699 .000 .000 .000 .POO .000
PSER -.137 .054 -.118 .293 .011 .937 .000 .000 .000 .000
CCMB -.031 .370 -.074 .512 .010 .222 .738 .000 .000 .000
VE .620 .350 .312 -.191 .114 .023 .065 .584 .000 .000
TECH .112 -.177 .133 .347 .028 .171 .072 .093 .880 .000
CPSP .312 .156 .068 .000 .097 .045 .025 -.008 -.049 .927

M. PDIACH DEPN PSER COMB TECH SUPP AS NO NK CS
MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
DEPN -.102 .995 .000 .000 .000 .000 .000 .000 .000 .000
PSER .336 .069 .939 .000 .000 .000 .000 .000 .000 .000
CC*4B .588 .030 .204 .782 .000 .000 .000 .000 .000 .000
TECH .212 .330 .136 .036 .909 .000 .000 .000 .000 .000
SUPP -.070 .248 .074 .061 .178 .945 .000 .000 .000 .000
AS .186 -.019 -.055 .314 -.189 .085 .906 .000 .000 .000
NO -.282 .107 -.052 .182 .150 .099 .348 .848 .000 .000
MK -.221 .123 -.100 .203 .154 .054 .452 .373 .717 .000
CS -.295 .122 -.039 .143 .111 .104 .268 .537 .087 .697

M.HD MACH NO MK AS VE CS TECH SPAT CPSP COMB
MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
NO -.282 .959 .000 .000 .000 .000 .000 .000 .000 .000
MK -.221 .581 .783 .000 .000 .000 .000 .000 .000 .000
AS .186 .368 .303 .859 .000 .000 .000 .000 .000 .000
VE -.296 .559 .395 .291 .599 .000 .000 .000 .000 .000
CS -.295 .643 .104 .009 .133 .686 .000 .030 .000 .000
TECH .212 .179 .090 -.312 .110 .007 .898 .000 .000 .000
SPAT -.062 .520 .465 .288 .078 .108 -.061 .637 .000 .000
CPSP ".054 .309 .114 .122 .015 .096 -.038 .219 .903 .000
CCM8 .588 .141 .077 .185 .091 -.007 .091 .074 .018 .756

M-PSE AR SPAT VE AS DEPN NO MK MACH PSER CPAC
AR 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .730 .683 .000 .000 .000 .000 .000 .000 .000 .000
VE .730 .132 .671 .000 .000 .000 .000 .000 .000 .000
AS .530 .265 .146 .792 .000 .000 .000 .000 .000 .000
DEPN .102 -.027 .027 -.113 .9a8 .000 .000 .000 .000 .000
NO .630 .082 .223 -.111 .055 .729 .000 .000 .000 .000
MK .830 .109 .119 -.096 .050 .066 .519 .000 .000 .000
MACH -.191 .113 -.255 .372 -.031 -.098 -.002 .858 .000 .000
PSER -.143 .020 -.051 .111 .064 -.039 -.054 .292 .933 .000
CPAC .356 .188 .124 -.061 .066 .037 .012 -.012 -.022 .901
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II. TEST SELECTION FACTOR SOLUTIONS BY SELECTION INDEX2

(see Appendix B for code names)

POINT DISTANCE INDEX

9--JOBS; HANDS-ON TESTING

M CS TECH GS AR AIT0 D0P' MO COM MC
gull 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
CS -.307 .952 .000 .000 .000 .000 .000 .000 .000 .000
TECH .244 .130 .961 .000 .000 .000 .000 .000 .000 .000
GS -.161 .425 -.051 .889 .000 .000 .000 .000 .000 .000
AR -.191 .487 .016 .550 .651 .000 .000 .000 .000 .000
AUTO .023 .156 .028 .192 .081 .965 .000 .000 .000 .000
DEPV -.097 .103 .309 -.009 .039 -.016 .939 .000 .000 .000
NO -.283 .651 .073 .235 .205 .011 -. 014 .627 .000 .000
Co=) .131 .001 .030 -.017 .029 .073 .140 .031 .977 .000
MC .034 .376 -. 143 .601 .281 .014 .004 -. 021 .004 .630

9-JOBS; NO HANDS-ON TESTING

AS NO PSTM SPAT NK CS VE SRAC P51com
AS 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
NO .321 .947 .000 .000 .000 .000 .000 .000 .000 .000
PST4 .456 .202 .866 .000 .000 .000 .000 .000 .000 .000
SPAT .573 .370 .302 .667 .000 .000 .000 .000 .000 .000
NK .424 .522 .110 .323 .657 .000 .000 .000 .000 .000
CS .230 .668 .074 .157 .046 .685 .000 .000 .000 .000
VE .528 .484. .052 .197 .242 .126 .609 .000 .000 .000
SAC .203 .139 .041 .116 -. 002 .048 .065 .958 .000 .000
PsER -. 002 -. 129 .064 -. 079 -.087 -. 054 -.055 .008 .980 .000
CCB .350 -.1"4 .144 -. 003 -. 087 -. 083 -. 049 -. 010 .364 .8a29

18 JOBS; 9 JOBS WITH, 9 JOBS WITHOUT HANDS-ON TESTING

CS AS VE W PSY SPAT MO DEP1 CO) MACH
CS 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
AS .230 .973 .000 .000 .000 .000 .000 .000 .000 .000
YE .577 .406 .709 .000 .000 .000 .000 .000 .000 .000
RK .536 .309 .382 .687 .000 .000 .000 .000 .000 .000
PSY .305 .397 .066 .122 .855 .000 .000 .000 .000 .000
SPAT .506 .469 .206 .276 .246 .587 .000 .000 .000 .000
no .706 .163 .218 .173 .027 .002 .630 000 .000 .000
DEPM .128 -. 088 .053 .109 -. 053 .001 .008 .979 .000 .000
COWD -. 039 .018 -. 057 .017 .145 -.063 .026 .147 .973 .000
MACH -. 307 .256 -. 330 -. 014 .072 .09 -. 056 -. 012 .094 .444

2 The experimental test selection results were obtained from
the analysis sample data set given in Appendix F, Tables F-2 & F-
3. Results are categorized by the selection index and the job
sample to which the index was applied.
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HORST' S DIFFERENTIAL INDEX (Hd)

9 JOBS; HANDS-ON TESTING

XACH CS TECR CS AR 20 COW DEN MO MC
PACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
CS -.307 .952 .000 .000 .000 .000 .000 .000 .000 .000
TECH .24 .130 .961 .000 .000 .000 .000 .000 .000 .000
CS -. 161 .425 -. 051 .889 .000 .000 .000 .000 .000 .000
AR -.191 .487 .016 .550 .651 .000 .000 .000 .000 .000
ATAO .023 .156 .028 .192 .081 .965 .000 .000 .000 .000
CO .131 .001 .030 -.017 .029 .073 .988 .000 .000 .000
DEPN -.097 .103 .309 -.009 .039 -.016 .133 .930 .000 .000
NO -. 283 .651 .073 .235 .205 .011 .018 -.017 .627 .000
mC .034 .376 -. 143 .601 .281 .014 .004 .004 -. 021 .630

9 JOBS; NO HANDS-ON TESTING

AS 90 SPAT PSYM NK VE CS S
AS 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
NO .321 .947 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .573 .370 .732 .000 .000 .000 .000 .000 .000 .000
PSTM .456 .202 .357 .790 .000 .000 .000 .000 .000 .000
Iq .424 .522 .340 ".032 .657 .000 .000 .000 .000 .000
vi .528 .484 .201 -.034 .242 .622 .000 .000 .000 .000
CS .230 .668 .174 .003 .046 .138 .671 .000 .000 .000
SRAC .203 .139 .122 -.011 -.002 .073 .033 .958 .000 .000
DEPV -.056 .135 .047 -.054 .110 .004 .056 .008 .979 .000
Gs .639 .340 .247 .006 .254 .298 -.024 .010 -.013 .512

18 JOBS; 9 JOBS WITH, 9 JOBS WITHOUT HANDS-ON TESTING

CS AS VE SPAT RK PSYH 00 6S DEN CXW
CS 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
AS .230 .973 .000 .000 .000 .000 .000 000 .000 .000
VE .57 .406 .709 .000 .000 .000 .000 .000 .000 .000
SPAT .506 .469 .206 .694 .000 .000 .000 .000 .000 .000
HK .536 .309 .382 .273 .630 .000 .000 .000 .000 .000
PSYM .305 .397 .066 .351 -.019 .789 .000 .000 .000 .000
No .706 .16 .218 .080 .154 .024 .630 .000 .000 .000
Gs .454 .549 .442 .135 .127 .028 -.016 .512 .000 .000
DEP .128 -.088 .053 .026 .108 -.049 .008 -.025 .979 .000
COM -.039 .018 -.057 .004 .016 .158 .026 -.022 .146 .973
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MODIFIED POINT DISTANCE INDEX

9 JOBS; HANDS-ON TESTING

KA&C TECH, CO f.JTO DEPM CO CS AR GS NO
KACN 1.000 .0O .000 .DO0 .000 .000 .000 o0 .000 .000
TECH .244 .970 .000 .000 .000 .000 .000 .000 .000 .000
COM .574 .065 .816 .000 .000 .000 .000 .000 .000 .000
AUTO .023 .049 .168 .984 .000 .000 .000 .000 .000 .000
DEPM -. 097 .320 .005 -. 005 .942 .000 .000 .000 .000 .000
COW .131 .030 .093 .055 .139 .975 .000 .000 .000 .000
CS -.307 .128 .124 .124 .061 -.030 .924 .000 .000 .000
AR -. 191 ,082 .232 .195 .053 -. 032 .428 .823 .000 .000
Gs -.161 .007 .328 .183 .019 -.061 .365 .515 .657 .000
no -. 283 .160 .156 .144 .033 -. 009 .605 .294 .045 .627

9 JOBS; NO HANDS-ON TESTING

DEPH PSER SAC C IO K PSYN SPAT AS CS
DEPM 1.000 .000 .000 .000 .000 .000 .000 000 .000 .000
PSER .026 1.000 .000 .000 .000 .000 .000 .000 .000 .000
SR.AC .024 -.023 .999 .000 .000 .000 .000 .000 .000 .000
C .128 .132 -.012 .983 .000 .000 .000 .000 .000 .000
No .110 -.126 .191 -.009 .967 .000 .000 .000 .000 .000
Ri .137 -.147 .192 -.022 .579 .766 .000 .000 .000 .000
PSYM -.024 .029 .157 .121 .326 .243 .891 .000 .000 .000
SPAT .052 -.084 .254 -.013 .485 .437 .335 .622 .000 .000
AS -.056 -.000 .204 .019 .298 .288 .285 .254 .798 .000
CS .128 -. 139 .187 -. 036 .660 .102 .052 .092 -. 081 .681

18 JOBS; 9 JOBS WITH, 9 JOBS WITHOUT HANDS-ON TESTING

MACH DEP11 PSER TECH SRAC XO AS PSYM CS SPAT
MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
DEP -.097 .995 .000 .000 .000 .000 .000 .000 .000 .000
PSER .328 .058 .943 .000 .000 .000 .000 .000 .000 .000
TECH .244 .312 .153 .905 .000 .000 .000 .000 .000 .000
SRAC -.051 .019 -.008 -.040 .998 .000 .000 .000 .000 .000
1$o -.283 M083 -. 037 .140 .187 .924 .000 .000 .000 .000
AS .178 -.039 -.061 -. 172 .205 .389 .860 .000 .000 .000
PSTM .046 -.020 .015 -.040 .157 .357 .314 .863 .000 .000
CS -. 307 .09 -. 043 .110 .180 .605 .038 .081 .689 .000
SPAT -. 061 .047 -. 069 -. 028 .252 .506 .381 .303 .134 .644
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MODIFIED HORST'S DIFFERENTIAL INDEX

9 JOBS; HANDS-ON TESTING

MAM CB TECH AUTO CS NO 16C AR eS DUN
MAx 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
COM .574 .819 .000 .000 .000 .000 .000 .000 .000 .000
TECH .244 .077 .967 .000 .000 .000 .000 .000 .000 .000
AUTO ,023 .171 .035 .984 .000 .000 .000 .000 .000 .000
CS -. 307 .134 .118 .124 .927 .000 .000 .000 .000 .000
N O -. 283 .169 .147 .144 .606 .694 .000 .000 .000 .000
mC .034 .289 -. 114 .163 .337 .230 .842 .000 .000 .000
AR -. 191 .237 .063 .195 .431 .348 .445 .599 .000 .000
GS -.161 .327 -.019 .183 .367 .260 .464 .212 .608 .000

DEP1 -.097 .030 .319 -.005 .062 -.009 .017 .032 -.028 .939

9 JOBS; NO HANDS-ON TESTING

DEPW VE SPAT NC 1O PSYM AS CS SRAC COWJ
DEPN 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000

VE .076 .997 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .052 .626 .778 .000 .000 .000 .000 .000 .000 .000
xx .137 .697 .310 .632 .000 .000 .000 .000 .000 .000
No .110 .622 .179 .201 .727 .000 .000 .000 .000 .000
PsM -.024 .387 .458 -.021 .031 .709 .000 .000 .000 .000
AS -.056 .534 .310 -.057 -.067 .134 .768 .000 .000 .000
cs .128 .569 .184 .102 .392 -.008 -.118 .670 .000 .000
SRAC .024 .243 .133 -.024 .033 -.000 .04 .033 .958 .000
COW .128 -.065 .019 -.005 .014 .171 .030 -.033 -.002 .973

18 JOBS; 9 JOBS WITH, 9 JOBS WITHOUT HANDS-ON TESTING

MACH CS SPAT NC CS MO Ps14 AS DEPN TECH
MACH 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
Cs -.307 .952 .000 .000 .000 .000 .000 .000 .000 .000
SPAT -.061 .512 .857 .000 .000 .000 .000 .000 .000 .000
NK -.221 .491 .489 .686 .000 .000 .000 .000 .000 .000

-.161 .425 .519 .292 .663 .000 .000 .000 .000 .000
NO -.283 .651 .214 .209 .049 .636 .000 .000 .000 .000
PSTM .046 .335 .500 -.007 .091 .036 .791 .000 .000 .000
AS .178 .299 .502 .103 .376 .046 .078 .6a3 .000 .000
DEPM -.097 .103 -.008 .099 -.073 -.000 -.055 -.065 .978 .000
TECH .244 .130 -.103 .197 -.079 .087 -.034 -.229 .259 .860
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MAX-PSE

9 JOBS; HANDS-ON TESTING

AR SPAT El WN YE DEPM TECH CS CPAC AUTO
AR 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .730 .683 .000 .000 .000 .000 .000 .000 .000 .000

El .659 .196 .726 .000 .000 .000 .000 .000 .000 .000
KA(hI -.191 .115 .154 .963 .000 .000 .000 .000 .000 .000

VE .733 .136 .207 -. 223 .593 .000 .000 .000 .000 .000
DEP .095 -. 025 -. 057 -. 070 .010 .991 .000 .000 .000 .000
TECH .032 -. 088 -. 072 .282 .126 .298 .895 .000 .000 .000
CS .522 183 -. 052 -. 229 .218 .063 .070 .763 .000 .000
CPAC .353 .196 -.005 -.054 .126 .062 .048 .078 .898 .000
AUTO .230 .053 .088 .049 .101 -. 004 .035 .005 -. 053 .959

9 JOBS; NO HANDS-ON TESTING

AR GS SPAT CS YE PSYM AS NK PSER DEP
AR 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
GS .726 .688 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .730 .206 .651 .000 .000 .000 .000 .000 .000 .000
CS .522 .109 .157 .831 .000 .000 .000 .000 .000 .000
VE .733 .386 .020 .179 .530 .000 .000 .000 .000 .000
PSYM .448 .185 .356 -.007 -.042 .798 .000 .000 .000 .000
AS .544 .354 .157 -.141 .027 .114 .721 .000 .000 .000
NK .836 .133 .071 .088 .044 -.035 -.103 .506 .000 .000
PSER -.132 -.000 .021 -.084 -.048 .097 .063 -.030 .979 .000
DEPN .095 -. 048 -. 011 .103 .012 -. 066 -. 094 .084 .064 .976

18 JOBS; 9 JOBS WITH, 9 JOBS WITHOUT HANDS-ON TESTING

AR SPAT GS CS AS DEPW CPAC PSYTH NUO 
AR 1.000 .000 .000 .000 .000 .000 .000 .000 .000 .000
SPAT .730 .683 .000 .000 .000 .000 .000 .000 .000 .000
GS .726 .208 .656 .000 .000 .000 .000 .000 .000 .000
cs .522 .183 .056 .831 .000 .000 .000 .000 .000 .000
AS .54 .2-56 .290 -.141 .731 .000 .000 .000 .000 .000
DPM .095 -.025 -.042 .103 -.103 .984 .000 .000 .000 .000
CAC .353 .196 .033 .126 -.025 .054 .904 .000 .000 .000
Ps-M .448 .395 .069 -. 007 .123 -. 041 .028 .788 .000 .000
No .635 .104 .068 .424 -.015 .010 .008 .016 .634 .000
NI .836 .108 .105 .088 -.105 .045 .016 -.019 .067 .502
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III. THE "FULL LEAST SQUARES" PREDICTOR BATTERY

TABLE F-4: THE "FULL LEAST SQUARE" BATTERY

Code Predictor

GS General Science
AR Arithmetic Reasoning
NO Numerical Operations
CS Coding Speed
AS Auto Shop Information
MK Mathematical Knowledge
MC Mechanical Comprehension
EI Electronics Information
VE Verbal
SPAT Spatial composite
CPAC Complex perceptual accuracy composite
PSYM Psychomotor composite
SRAC Simple reaction accuracy composite
AUTO Autonomy composite
DEPN Dependability composite
COND Physical condition composite
COMB Combat interest composite
PSER Protective service interest composite
TECH Technical interest composite
MACH Machinery interest composite

F- 12


